Newer
Older
import matplotlib.pyplot as plt
import numpy as np
import numpy.typing as npt
import torch
import torch.nn.functional as F
from PIL import Image
from scipy.fft import fft
from torch import Tensor, nn
from torch.optim import Adam
from torch.utils.data import DataLoader, RandomSampler
from torchvision.datasets import ImageFolder
from torchvision.transforms import transforms
device = torch.device("cuda")
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
dx = [+1, 0, -1, 0]
dy = [0, +1, 0, -1]
# perform depth first search for each candidate/unlabeled region
# reference: https://stackoverflow.com/questions/14465297/connected-component-labeling-implementation
def dfs(mask: npt.NDArray, x: int, y: int, labels: npt.NDArray, current_label: int):
n_rows, n_cols = mask.shape
if x < 0 or x == n_rows:
return
if y < 0 or y == n_cols:
return
if labels[x][y] or not mask[x][y]:
return # already labeled or not marked with 1 in image
# mark the current cell
labels[x][y] = current_label
# recursively mark the neighbors
for direction in range(4):
dfs(mask, x + dx[direction], y + dy[direction], labels, current_label)
def find_components(mask: npt.NDArray):
label = 0
n_rows, n_cols = mask.shape
labels = np.zeros(mask.shape, dtype=np.int8)
for i in range(n_rows):
for j in range(n_cols):
if not labels[i][j] and mask[i][j]:
label += 1
dfs(mask, i, j, labels, label)
return labels
# https://stackoverflow.com/questions/31400769/bounding-box-of-numpy-array
def bbox(img):
max_x, max_y = img.shape
rows = np.any(img, axis=1)
cols = np.any(img, axis=0)
rmin, rmax = np.where(rows)[0][[0, -1]]
cmin, cmax = np.where(cols)[0][[0, -1]]
rmin = rmin - 1 if rmin > 0 else rmin
cmin = cmin - 1 if cmin > 0 else cmin
rmax = rmax + 1 if rmax < max_x else rmax
cmax = cmax + 1 if cmax < max_y else cmax
return rmin, rmax, cmin, cmax
def extract_single_masks(labels: npt.NDArray):
masks = []
for l in range(labels.max() + 1):
mask = (labels == l).astype(np.int8)
rmin, rmax, cmin, cmax = bbox(mask)
masks.append(mask[rmin : rmax + 1, cmin : cmax + 1])
return masks
class VAE(nn.Module):
"""
https://github.com/pytorch/examples/blob/main/vae/main.py
"""
def __init__(self, bottleneck=2, image_dim=4096):
super(VAE, self).__init__()
self.bottleneck = bottleneck
self.image_dim = image_dim
self.prelim_encode = nn.Sequential(
nn.Flatten(), nn.Linear(image_dim, 400), nn.ReLU()
)
self.encode_mu = nn.Sequential(nn.Linear(400, bottleneck))
self.encode_logvar = nn.Sequential(nn.Linear(400, bottleneck))
self.decode = nn.Sequential(
nn.Linear(bottleneck, 400),
nn.ReLU(),
nn.Linear(400, image_dim),
nn.Sigmoid(),
)
def encode(self, x):
# h1 = F.relu(self.encode(x))
# return self.encode_mu(h1), self.encode_logvar(h1)
x = self.prelim_encode(x)
return self.encode_mu(x), self.encode_logvar(x)
def reparameterize(self, mu, logvar):
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return mu + eps * std
def forward(self, x):
mu, logvar = self.encode(x)
z = self.reparameterize(mu, logvar)
return self.decode(z), mu, logvar
# Reconstruction + KL divergence losses summed over all elements and batch
def loss(self, recon_x, x, mu, logvar):
BCE = F.binary_cross_entropy(recon_x, x.view(-1, 4096), reduction="sum")
# see Appendix B from VAE paper:
# Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014
# https://arxiv.org/abs/1312.6114
# 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
class CONVVAE(nn.Module):
def __init__(
self,
bottleneck=2,
):
super(CONVVAE, self).__init__()
self.bottleneck = bottleneck
self.conv1 = nn.Sequential(
nn.Conv2d(1, 16, 5),
nn.ReLU(),
nn.MaxPool2d((2, 2), return_indices=True), # -> 30x30x16
)
self.conv2 = nn.Sequential(
nn.Conv2d(16, 32, 3),
nn.ReLU(),
nn.MaxPool2d((2, 2), return_indices=True), # -> 14x14x32
)
self.conv3 = nn.Sequential(
nn.Conv2d(32, 64, 3),
nn.ReLU(),
nn.MaxPool2d((2, 2), return_indices=True), # -> 6x6x64
)
# self.conv4 = nn.Sequential(
# nn.Conv2d(32, self.bottleneck, 5),
# nn.ReLU(),
# nn.MaxPool2d((2, 2), return_indices=True), # -> 1x1xbottleneck
# )
self.decode_linear = nn.Linear(self.bottleneck, self.feature_dim)
# self.decode4 = nn.Sequential(
# nn.ConvTranspose2d(self.bottleneck, 32, 5),
# nn.ReLU(),
# )
nn.ConvTranspose2d(16, 1, 5),
nn.Sigmoid(),
)
def encode(self, x):
x, idx1 = self.conv1(x)
x, idx2 = self.conv2(x)
x, idx3 = self.conv3(x)
z = z.view((-1, 64, 6, 6))
# z = F.max_unpool2d(z, idx4, (2, 2))
# z = self.decode4(z)
z = F.max_unpool2d(z, idx3, (2, 2))
z = self.decode3(z)
z = F.max_unpool2d(z, idx2, (2, 2))
z = self.decode2(z)
z = F.max_unpool2d(z, idx1, (2, 2))
z = self.decode1(z)
# z = z.view(-1, 128, 1, 1)
# return self.decode_conv(z)
return z
def reparameterize(self, mu, logvar):
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return mu + eps * std
def forward(self, x):
def loss(self, recon_x, x, mu, logvar):
"""https://github.com/pytorch/examples/blob/main/vae/main.py"""
BCE = F.binary_cross_entropy(recon_x, x, reduction="sum")
# see Appendix B from VAE paper:
# Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014
# https://arxiv.org/abs/1312.6114
# 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
return BCE + KLD
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
def load_data():
transform = transforms.Compose(
[
transforms.Grayscale(),
transforms.Resize(
(64, 64), interpolation=transforms.InterpolationMode.BILINEAR
),
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.ToTensor(),
]
)
trajectories = [
# "v3_subtle_iceberg_lettuce_nymph-6_203-2056",
"v3_absolute_grape_changeling-16_2277-4441",
"v3_content_squash_angel-3_16074-17640",
"v3_smooth_kale_loch_ness_monster-1_4439-6272",
"v3_cute_breadfruit_spirit-6_17090-19102",
"v3_key_nectarine_spirit-2_7081-9747",
"v3_subtle_iceberg_lettuce_nymph-6_3819-6049",
"v3_juvenile_apple_angel-30_396415-398113",
"v3_subtle_iceberg_lettuce_nymph-6_6100-8068",
]
datasets = []
for trj in trajectories:
datasets.append(
ImageFolder(
f"activation_vis/out/critic/masks/{trj}/0/4", transform=transform
)
)
dataset = torch.utils.data.ConcatDataset(datasets)
data_loader = DataLoader(dataset, batch_size=128, shuffle=True)
return data_loader, dataset
def train(epoch, model: VAE or CONVVAE, optimizer, data_loader, log_interval=40):
model.train()
train_loss = 0
for batch_idx, (data, _) in enumerate(data_loader):
data = data.to(device)
optimizer.zero_grad()
recon_batch, mu, logvar = model(data)
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
loss.backward()
train_loss += loss.item()
optimizer.step()
if batch_idx % log_interval == 0:
print(
"Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format(
epoch,
batch_idx * len(data),
len(data_loader.dataset),
100.0 * batch_idx / len(data_loader),
loss.item() / len(data),
)
)
print(
"====> Epoch: {} Average loss: {:.4f}".format(
epoch, train_loss / len(data_loader.dataset)
)
)
def test(epoch, models, dataset):
for model in models:
model.eval()
test_loss = [0 for _ in models]
test_batch_size = 32
sampler = RandomSampler(dataset, replacement=True, num_samples=64)
test_loader = DataLoader(dataset, batch_size=test_batch_size, sampler=sampler)
comp_data = None
with torch.no_grad():
for i, (data, _) in enumerate(test_loader):
data = data.to(device)
for j, model in enumerate(models):
recon_batch, mu, logvar = model(data)
test_loss[j] += model.loss(recon_batch, data, mu, logvar).item()
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
if i == 0:
n = min(data.size(0), 20)
if comp_data == None:
comp_data = data[:n]
comp_data = torch.cat(
[comp_data, recon_batch.view(test_batch_size, 1, 64, 64)[:n]]
)
if i == 0:
if not os.path.exists("results"):
os.makedirs("results")
save_image(
comp_data.cpu(),
"results/reconstruction_" + str(epoch) + ".png",
nrow=min(data.size(0), 20),
)
for i, model in enumerate(models):
test_loss[i] /= len(test_loader.dataset)
print(f"====> Test set loss model {i}: {test_loss[i]:.4f}")
def test_mask(model: nn.Module, path: str, label: int, epsilon=0.4):
model.eval()
image = transforms.F.to_tensor(transforms.F.to_grayscale(Image.open(path)))
labels = find_components(image[0])
single_masks = extract_single_masks(labels)
mask = transforms.F.to_tensor(
transforms.F.resize(
transforms.F.to_pil_image((single_masks[label] * 255).astype(np.uint8)),
(64, 64),
)
)
with torch.no_grad():
mask = mask.to(device)
recon_x, _, _ = model(mask)
recon_bits = recon_x.view(64, 64).cpu().numpy() > epsilon
mask_bits = mask.cpu().numpy() > 0
TP = (mask_bits & recon_bits).sum()
FP = (recon_bits & ~mask_bits).sum()
FN = (mask_bits & ~recon_bits).sum()
prec = TP / (TP + FP)
rec = TP / (TP + FN)
# loss = pixelwise_loss(recon_x, mask)
comp_data = torch.cat(
[mask[0].cpu(), recon_x.view(64, 64).cpu(), torch.from_numpy(recon_bits)]
)
# print(f"mask loss: {loss:.4f}")
return prec, rec, comp_data
def distance_measure(model: VAE, img: Tensor):
model.eval()
with torch.no_grad():
mask = img.to(device)
recon, mean, _ = model(mask)
# TODO: apply threshold here?!
_, recon_mean, _ = model(recon)
distance = torch.norm(mean - recon_mean, p=2)
return distance, make_grid(
def compression_complexity(img: Tensor):
np_img = img[0].numpy()
compressed = compress(np_img)
return len(compressed)
def fft_measure(img: Tensor):
np_img = img[0][0].numpy()
fft = np.fft.fft2(np_img)
magnitude = np.fft.fftshift(np.abs(fft))
spectrum = np.log(1 + magnitude)
M, N = np_img.shape
total_freq_value = spectrum.sum()
inner_sum = spectrum[M // 3 : 2 * (M // 3), N // 3 : 2 * (N // 3)].sum()
return (total_freq_value - inner_sum) / total_freq_value
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
def complexity_measure(
model_gb: nn.Module,
model_lb: nn.Module,
img: Tensor,
epsilon=0.4,
save_preliminary=False,
):
model_gb.eval()
model_lb.eval()
with torch.no_grad():
mask = img.to(device)
recon_gb, _, _ = model_gb(mask)
recon_lb, _, _ = model_lb(mask)
recon_bits_gb = recon_gb.view(-1, 64, 64).cpu() > epsilon
recon_bits_lb = recon_lb.view(-1, 64, 64).cpu() > epsilon
mask_bits = mask[0].cpu() > 0
if save_preliminary:
save_image(
torch.stack(
[mask_bits.float(), recon_bits_gb.float(), recon_bits_lb.float()]
).cpu(),
f"shape_complexity/results/mask_recon{model_gb.bottleneck}_{model_lb.bottleneck}.png",
)
save_image(
torch.stack(
[
(mask_bits & recon_bits_gb).float(),
(recon_bits_gb & ~mask_bits).float(),
(mask_bits & recon_bits_lb).float(),
(recon_bits_lb & ~mask_bits).float(),
]
).cpu(),
f"shape_complexity/results/tp_fp_recon{model_gb.bottleneck}_{model_lb.bottleneck}.png",
)
tp_gb = (mask_bits & recon_bits_gb).sum()
fp_gb = (recon_bits_gb & ~mask_bits).sum()
tp_lb = (mask_bits & recon_bits_lb).sum()
fp_lb = (recon_bits_lb & ~mask_bits).sum()
prec_gb = tp_gb / (tp_gb + fp_gb)
prec_lb = tp_lb / (tp_lb + fp_lb)
complexity = 1 - (prec_gb - np.abs(prec_gb - prec_lb))
complexity_lb = 1 - prec_lb
complexity_gb = 1 - prec_gb
# 1 - (0.4 - abs(0.4 - 0.7)) = 0.9
# 1 - 0.7 = 0.3
return (
complexity,
complexity_lb,
complexity_gb,
prec_gb - prec_lb,
prec_lb,
prec_gb,
make_grid(
torch.stack(
[mask[0], recon_lb.view(-1, 64, 64), recon_gb.view(-1, 64, 64)]
).cpu(),
nrow=3,
padding=0,
),
)
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
def complexity_measure_diff(
model_gb: nn.Module,
model_lb: nn.Module,
img: Tensor,
):
model_gb.eval()
model_lb.eval()
with torch.no_grad():
mask = img.to(device)
recon_gb, _, _ = model_gb(mask)
recon_lb, _, _ = model_lb(mask)
diff = torch.abs((recon_gb - recon_lb).cpu().sum())
return (
diff,
make_grid(
torch.stack(
[mask[0], recon_lb.view(-1, 64, 64), recon_gb.view(-1, 64, 64)]
).cpu(),
nrow=3,
padding=0,
),
)
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
def plot_samples(masks: Tensor, complexities: npt.NDArray):
dpi = 150
rows = cols = 20
total = rows * cols
n_samples, _, y, x = masks.shape
extent = (0, x - 1, 0, y - 1)
if total != n_samples:
raise Exception("shape mismatch")
fig = plt.figure(figsize=(32, 16), dpi=dpi)
for idx in np.arange(n_samples):
ax = fig.add_subplot(rows, cols, idx + 1, xticks=[], yticks=[])
plt.imshow(masks[idx][0], cmap=plt.cm.gray, extent=extent)
ax.set_title(
f"{complexities[idx]:.4f}",
fontdict={"fontsize": 6, "color": "orange"},
y=0.35,
)
fig.patch.set_facecolor("#292929")
height_px = y * rows
width_px = x * cols
fig.set_size_inches(width_px / (dpi / 2), height_px / (dpi / 2), forward=True)
fig.tight_layout(pad=0)
return fig
def visualize_sort_mean(data_loader: DataLoader, model: VAE):
recon_masks = torch.zeros((400, 3, 64, 128))
masks = torch.zeros((400, 1, 64, 64))
distances = torch.zeros((400,))
for i, (mask, _) in enumerate(data_loader, 0):
distance, mask_recon_grid = distance_measure(model, mask)
distances[i] = distance
sort_idx = torch.argsort(distances)
masks_sorted = masks.numpy()[sort_idx]
plt.plot(np.arange(len(distances)), np.sort(distances.numpy()))
plt.savefig("shape_complexity/results/distance_plot.png")
return plot_samples(masks_sorted, distances.numpy()[sort_idx]), plot_samples(
recon_masks_sorted, distances.numpy()[sort_idx]
)
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
def visualize_sort_compression(data_loader: DataLoader):
masks = torch.zeros((400, 1, 64, 64))
distances = torch.zeros((400,))
for i, (mask, _) in enumerate(data_loader, 0):
masks[i] = mask[0]
distances[i] = compression_complexity(mask)
sort_idx = torch.argsort(distances)
masks_sorted = masks.numpy()[sort_idx]
plt.plot(np.arange(len(distances)), np.sort(distances.numpy()))
plt.xlabel("images")
plt.ylabel("compression length")
plt.savefig("shape_complexity/results/compression_plot.png")
return plot_samples(masks_sorted, distances.numpy()[sort_idx])
def visualize_sort_fft(data_loader: DataLoader):
masks = torch.zeros((400, 1, 64, 64))
distances = torch.zeros((400,))
for i, (mask, _) in enumerate(data_loader, 0):
masks[i] = mask[0]
distances[i] = fft_measure(mask)
sort_idx = torch.argsort(distances)
masks_sorted = masks.numpy()[sort_idx]
plt.plot(np.arange(len(distances)), np.sort(distances.numpy()))
plt.xlabel("images")
plt.ylabel("compression length")
plt.savefig("shape_complexity/results/fft_plot.png")
return plot_samples(masks_sorted, distances.numpy()[sort_idx])
def visualize_sort_diff(data_loader, model_gb: nn.Module, model_lb: nn.Module):
masks_recon = torch.zeros((400, 3, 64, 192))
masks = torch.zeros((400, 1, 64, 64))
diffs = torch.zeros((400,))
for i, (mask, _) in enumerate(data_loader, 0):
diff, mask_recon_grid = complexity_measure_diff(model_gb, model_lb, mask)
masks_recon[i] = mask_recon_grid
masks[i] = mask[0]
diffs[i] = diff
sort_idx = np.argsort(np.array(diffs))
recon_masks_sorted = masks_recon.numpy()[sort_idx]
masks_sorted = masks.numpy()[sort_idx]
plt.plot(np.arange(len(diffs)), np.sort(diffs))
plt.xlabel("images")
plt.ylabel("pixelwise difference of reconstructions")
plt.savefig("shape_complexity/results/px_diff_plot.png")
return plot_samples(masks_sorted, diffs[sort_idx]), plot_samples(
recon_masks_sorted, diffs[sort_idx]
)
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
def visualize_sort_3dim(
data_loader: DataLoader, model_gb: nn.Module, model_lb: nn.Module
):
masks_recon = torch.zeros((400, 3, 64, 192))
masks = torch.zeros((400, 1, 64, 64))
measures = torch.zeros((400, 3))
for i, (mask, _) in enumerate(data_loader, 0):
c_compress = compression_complexity(mask)
c_fft = fft_measure(mask)
# TODO: maybe exchange by diff measure instead of precision
c_vae, _, _, _, _, _, mask_recon_grid = complexity_measure(
model_gb, model_lb, mask
)
masks_recon[i] = mask_recon_grid
masks[i] = mask[0]
measures[i] = torch.tensor([c_compress, c_fft, c_vae])
measures[:] /= measures.max(dim=0).values
measure_norm = torch.linalg.vector_norm(measures, dim=1)
sort_idx = np.argsort(np.array(measure_norm))
recon_masks_sorted = masks_recon.numpy()[sort_idx]
masks_sorted = masks.numpy()[sort_idx]
# TODO: add 3d plot of measures
return plot_samples(masks_sorted, measure_norm[sort_idx]), plot_samples(
recon_masks_sorted, measure_norm[sort_idx]
)
def visualize_sort(dataset, model_gb: nn.Module, model_lb: nn.Module):
sampler = RandomSampler(dataset, replacement=True, num_samples=400)
data_loader = DataLoader(dataset, batch_size=1, sampler=sampler)
masks = torch.zeros((400, 3, 64, 192))
complexities = torch.zeros((400,))
diffs = []
for i, (mask, _) in enumerate(data_loader, 0):
complexity, _, _, diff, mask_recon_grid = complexity_measure(
model_gb, model_lb, mask, save_preliminary=True
)
masks[i] = mask_recon_grid
diffs.append(diff)
complexities[i] = complexity
sort_idx = np.argsort(np.array(complexities))
masks_sorted = masks.numpy()[sort_idx]
plt.plot(np.arange(len(diffs)), np.sort(diffs))
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
plt.savefig("shape_complexity/results/diff_plot.png")
return plot_samples(masks_sorted, complexities[sort_idx])
def visualize_sort_fixed(data_loader, model_gb: nn.Module, model_lb: nn.Module):
masks = torch.zeros((400, 3, 64, 192))
complexities = torch.zeros((400,))
complexities_lb = torch.zeros((400,))
complexities_gb = torch.zeros((400,))
diffs = []
prec_lbs = []
prec_gbs = []
for i, (mask, _) in enumerate(data_loader, 0):
(
complexity,
lb,
gb,
diff,
prec_lb,
prec_gb,
mask_recon_grid,
) = complexity_measure(model_gb, model_lb, mask, save_preliminary=True)
masks[i] = mask_recon_grid
diffs.append(diff)
prec_lbs.append(prec_lb)
prec_gbs.append(prec_gb)
complexities[i] = complexity
complexities_lb[i] = lb
complexities_gb[i] = gb
sort_idx = np.argsort(np.array(complexities))
sort_idx_lb = np.argsort(np.array(complexities_lb))
sort_idx_gb = np.argsort(np.array(complexities_gb))
masks_sorted = masks.numpy()[sort_idx]
masks_sorted_lb = masks.numpy()[sort_idx_lb]
masks_sorted_gb = masks.numpy()[sort_idx_gb]
diff_sort_idx = np.argsort(diffs)
# plt.savefig("shape_complexity/results/diff_plot.png")
# plt.clf
fig, ax1 = plt.subplots()
ax2 = ax1.twinx()
ax1.plot(
np.arange(len(prec_lbs)),
np.array(prec_lbs)[diff_sort_idx],
label=f"bottleneck {model_lb.bottleneck}",
)
ax1.plot(
np.arange(len(prec_gbs)),
np.array(prec_gbs)[diff_sort_idx],
label=f"bottleneck {model_gb.bottleneck}",
)
ax2.plot(
np.arange(len(diffs)),
np.sort(diffs),
color="red",
label="prec difference (H - L)",
ax1.legend(loc="lower left")
ax2.legend(loc="lower right")
ax1.set_ylabel("precision")
ax2.set_ylabel("prec difference (H-L)")
plt.savefig("shape_complexity/results/prec_plot.png")
plt.clf()
fig = plot_samples(masks_sorted, complexities[sort_idx])
fig.savefig("shape_complexity/results/abs.png")
plt.close(fig)
fig = plot_samples(masks_sorted_lb, complexities_lb[sort_idx_lb])
fig.savefig("shape_complexity/results/lb.png")
plt.close(fig)
fig = plot_samples(masks_sorted_gb, complexities_gb[sort_idx_gb])
fig.savefig("shape_complexity/results/gb.png")
plt.close(fig)
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
def visualize_sort_group(data_loader, model_gb: nn.Module, model_lb: nn.Module):
recon_masks = torch.zeros((400, 3, 64, 192))
masks = torch.zeros((400, 1, 64, 64))
complexities = torch.zeros((400,))
diffs = np.zeros((400,))
prec_gbs = np.zeros((400,))
prec_lbs = np.zeros((400,))
for i, (mask, _) in enumerate(data_loader, 0):
(
complexity,
_,
_,
diff,
prec_lb,
prec_gb,
mask_recon_grid,
) = complexity_measure(model_gb, model_lb, mask, save_preliminary=True)
recon_masks[i] = mask_recon_grid
masks[i] = mask[0]
diffs[i] = diff
prec_gbs[i] = prec_gb
prec_lbs[i] = prec_lb
complexities[i] = complexity
sort_idx = np.argsort(np.array(complexities))
masks_sorted = masks.numpy()[sort_idx]
recon_masks_sorted = recon_masks.numpy()[sort_idx]
group_labels = ["lte_0", "gt_0_lte0.05", "gt_0.05"]
bin_edges = [-np.inf, 0.0, 0.05, np.inf]
bins = np.digitize(diffs, bins=bin_edges, right=True)
for i in range(bins.min(), bins.max() + 1):
bin_idx = bins == i
binned_prec_gb = prec_gbs[bin_idx]
prec_mean = binned_prec_gb.mean()
prec_idx = prec_gbs > prec_mean
binned_masks_high = recon_masks[bin_idx & prec_idx]
binned_masks_low = recon_masks[bin_idx & ~prec_idx]
save_image(
binned_masks_high,
f"shape_complexity/results/diff_{group_labels[i-1]}_high.png",
padding=10,
)
save_image(
binned_masks_low,
f"shape_complexity/results/diff_{group_labels[i-1]}_low.png",
padding=10,
)
diff_sort_idx = np.argsort(diffs)
fig, ax1 = plt.subplots()
ax2 = ax1.twinx()
ax1.plot(
np.arange(len(prec_lbs)),
np.array(prec_lbs)[diff_sort_idx],
label=f"bottleneck {model_lb.bottleneck}",
)
ax1.plot(
np.arange(len(prec_gbs)),
np.array(prec_gbs)[diff_sort_idx],
label=f"bottleneck {model_gb.bottleneck}",
)
ax2.plot(
np.arange(len(diffs)),
np.sort(diffs),
color="red",
label="prec difference (H - L)",
)
ax1.legend(loc="lower left")
ax2.legend(loc="lower right")
ax1.set_ylabel("precision")
ax2.set_ylabel("prec difference (H-L)")
ax1.set_xlabel("image")
plt.savefig("shape_complexity/results/prec_plot.png")
plt.tight_layout(pad=2)
plt.clf()
fig = plot_samples(recon_masks_sorted, complexities[sort_idx])
fig.savefig("shape_complexity/results/abs_recon.png")
plt.close(fig)
fig = plot_samples(masks_sorted, complexities[sort_idx])
fig.savefig("shape_complexity/results/abs.png")
plt.close(fig)
def main():
models = {i: CONVVAE(bottleneck=i).to(device) for i in bottlenecks}
optimizers = {i: Adam(model.parameters(), lr=LR) for i, model in models.items()}
data_loader, dataset = load_data()
train_size = int(0.8 * len(dataset))
test_size = len(dataset) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(
dataset, [train_size, test_size]
)
train_loader = DataLoader(train_dataset, batch_size=256, shuffle=True)
if LOAD_PRETRAINED:
for i, model in models.items():
model.load_state_dict(
torch.load(f"shape_complexity/trained/CONVVAE_{i}_split_data.pth")
)
else:
for epoch in range(EPOCHS):
for i, model in models.items():
train(
epoch,
model=model,
optimizer=optimizers[i],
data_loader=train_loader,
test(epoch, models=list(models.values()), dataset=test_dataset)
for bn in bottlenecks:
if not os.path.exists("shape_complexity/trained"):
os.makedirs("shape_complexity/trained")
torch.save(
models[bn].state_dict(),
f"shape_complexity/trained/CONVVAE_{bn}_split_data.pth",
)
# for i in range(10):
# figure = visualize_sort(dataset, models[bn_gt], models[bn_lt])
# figure.savefig(
# f"shape_complexity/results/this_{bn_gt}_to_{bn_lt}_sample{i}.png"
# )
# figure.clear()
# plt.close(figure)
# figure = visualize_sort(dataset, models[bn_gt], models[bn_lt])
# figure.savefig(f"shape_complexity/results/sort_{bn_gt}_to_{bn_lt}.png")
sampler = RandomSampler(dataset, replacement=True, num_samples=400)
data_loader = DataLoader(dataset, batch_size=1, sampler=sampler)
visualize_sort_group(data_loader, models[bn_gt], models[bn_lt])
# visualize_sort_fixed(data_loader, models[bn_gt], models[bn_lt])
fig, _ = visualize_sort_3dim(data_loader, models[bn_gt], models[bn_lt])
fig.savefig(f"shape_complexity/results/sort_comp_fft_prec.png")
fig = visualize_sort_fft(data_loader)
fig.savefig(f"shape_complexity/results/sort_fft.png")
fig = visualize_sort_compression(data_loader)
fig.savefig(f"shape_complexity/results/sort_compression.png")
fig, fig_recon = visualize_sort_mean(data_loader, models[bn_gt])
fig.savefig(f"shape_complexity/results/sort_mean_bn{bn_gt}.png")
fig_recon.savefig(f"shape_complexity/results/recon_sort_mean_bn{bn_gt}.png")
plt.close(fig)
plt.close(fig_recon)
fig, fig_recon = visualize_sort_diff(data_loader, models[bn_gt], models[bn_lt])
fig.savefig(f"shape_complexity/results/sort_diff_bn{bn_gt}_bn{bn_lt}.png")
fig_recon.savefig(
f"shape_complexity/results/recon_sort_diff_bn{bn_gt}_bn{bn_lt}.png"
)
if __name__ == "__main__":
main()