"...ipaaca.git" did not exist on "6892366c14253213675732c5d4bf8b2c0d338651"
Newer
Older
from typing import Dict, Optional
import sys
import torch
from torch import Tensor
from mu_map.training.loss import WeightedLoss
from mu_map.logging import get_logger
# Establish convention for real and fake labels during training
LABEL_REAL = 1.0
LABEL_FAKE = 0.0
@dataclass
class TrainingParams:
model: torch.nn.Module
optimizer: torch.optim.Optimizer
lr_scheduler: Optional[torch.optim.lr_scheduler._LRScheduler]
class cGANTraining:
def __init__(
self,
data_loaders: Dict[str, torch.utils.data.DataLoader],
epochs: int,
device: torch.device,
snapshot_dir: str,
snapshot_epoch: int,
params_generator: torch.nn.Module,
params_discriminator: torch.nn.Module,
loss_func_dist: WeightedLoss,
weight_criterion_dist: float,
weight_criterion_adv: float,
logger=None,
):
self.data_loaders = data_loaders
self.epochs = epochs
self.device = device
self.snapshot_dir = snapshot_dir
self.snapshot_epoch = snapshot_epoch
self.logger = logger if logger is not None else get_logger()
self.params_g = params_generator
self.params_d = params_discriminator
self.weight_criterion_dist = weight_criterion_dist
self.weight_criterion_adv = weight_criterion_adv
self.criterion_adv = torch.nn.MSELoss(reduction="mean")
loss_val_min = sys.maxsize
for epoch in range(1, self.epochs + 1):
str_epoch = f"{str(epoch):>{len(str(self.epochs))}}"
self.logger.debug(f"Run epoch {str_epoch}/{self.epochs} ...")
self._train_epoch()
loss_train = self._eval_epoch("train")
f"Epoch {str_epoch}/{self.epochs} - Loss train: {loss_train:.6f}"
)
loss_val = self._eval_epoch("validation")
f"Epoch {str_epoch}/{self.epochs} - Loss validation: {loss_val:.6f}"
)
if loss_val < loss_val_min:
loss_val_min = loss_val
f"Store snapshot val_min of epoch {str_epoch} with minimal validation loss"
)
self.store_snapshot("val_min")
self._store_snapshot(epoch)
if self.params_d.lr_scheduler is not None:
self.logger.debug("Step LR scheduler of discriminator")
self.params_d.lr_scheduler.step()
if self.params_g.lr_scheduler is not None:
self.logger.debug("Step LR scheduler of generator")
self.params_g.lr_scheduler.step()
# setup training mode
torch.set_grad_enabled(True)
self.params_d.model.train()
self.params_g.model.train()
data_loader = self.data_loaders["train"]
for i, (recons, mu_maps_real) in enumerate(data_loader):
print(
f"Batch {str(i):>{len(str(len(data_loader)))}}/{len(data_loader)}",
end="\r",
)
batch_size = recons.shape[0]
mu_maps_real = mu_maps_real.to(self.device)
self.params_d.optimizer.zero_grad()
self.params_g.optimizer.zero_grad()
# compute fake mu maps with generator
mu_maps_fake = self.params_g.model(recons)
# compute discriminator loss for fake mu maps
inputs_d_fake = torch.cat((recons, mu_maps_fake), dim=1)
outputs_d_fake = self.params_d.model(
inputs_d_fake.detach()
) # note the detach, so that gradients are not computed for the generator
labels_fake = torch.full(
(outputs_d_fake.shape), LABEL_FAKE, device=self.device
)
loss_d_fake = self.criterion_adv(outputs_d_fake, labels_fake)
# compute discriminator loss for real mu maps
inputs_d_real = torch.cat((recons, mu_maps_real), dim=1)
outputs_d_real = self.params_d.model(
inputs_d_real
) # note the detach, so that gradients are not computed for the generator
labels_real = torch.full(
(outputs_d_fake.shape), LABEL_REAL, device=self.device
)
loss_d_real = self.criterion_adv(outputs_d_real, labels_real)
# update discriminator
loss_d = 0.5 * (loss_d_fake + loss_d_real)
loss_d.backward() # compute gradients
self.params_d.optimizer.step()
inputs_d_fake = torch.cat((recons, mu_maps_fake), dim=1)
outputs_d_fake = self.params_d.model(inputs_d_fake)
loss_g_adv = self.criterion_adv(outputs_d_fake, labels_real)
loss_g_dist = self.criterion_dist(mu_maps_fake, mu_maps_real)
loss_g = (
self.weight_criterion_adv * loss_g_adv
+ self.weight_criterion_dist * loss_g_dist
)
self.params_g.optimizer.step()
# setup evaluation mode
self.params_d.model = self.params_d.model.eval()
self.params_g.model = self.params_g.model.eval()
data_loader = self.data_loaders[split_name]
loss = 0.0
updates = 0
for i, (recons, mu_maps) in enumerate(data_loader):
print(
f"Batch {str(i):>{len(str(len(data_loader)))}}/{len(data_loader)}",
end="\r",
)
recons = recons.to(self.device)
mu_maps = mu_maps.to(self.device)
outputs = self.params_g.model(recons)
loss += torch.nn.functional.l1_loss(outputs, mu_maps)
updates += 1
return loss / updates
def _store_snapshot(self, epoch):
prefix = f"{epoch:0{len(str(self.epochs))}d}"
self.store_snapshot(prefix)
def store_snapshot(self, prefix: str):
snapshot_file_d = os.path.join(self.snapshot_dir, f"{prefix}_discriminator.pth")
snapshot_file_g = os.path.join(self.snapshot_dir, f"{prefix}_generator.pth")
self.logger.debug(f"Store snapshots at {snapshot_file_d} and {snapshot_file_g}")
torch.save(self.params_d.model.state_dict(), snapshot_file_d)
torch.save(self.params_g.model.state_dict(), snapshot_file_g)
if __name__ == "__main__":
import argparse
import random
import sys
import numpy as np
from mu_map.dataset.patches import MuMapPatchDataset
from mu_map.dataset.normalization import (
MeanNormTransform,
MaxNormTransform,
GaussianNormTransform,
)
from mu_map.dataset.transform import PadCropTranform, SequenceTransform
from mu_map.logging import add_logging_args, get_logger_by_args
from mu_map.models.unet import UNet
from mu_map.models.discriminator import Discriminator, PatchDiscriminator
parser = argparse.ArgumentParser(
description="Train a UNet model to predict μ-maps from reconstructed scatter images",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
# Model Args
parser.add_argument(
"--features",
type=int,
nargs="+",
default=[64, 128, 256, 512],
help="number of features in the layers of the UNet structure",
)
# Dataset Args
parser.add_argument(
"--dataset_dir",
type=str,
help="the directory where the dataset for training is found",
)
parser.add_argument(
"--input_norm",
type=str,
choices=["none", "mean", "max", "gaussian"],
default="mean",
help="type of normalization applied to the reconstructions",
)
parser.add_argument(
"--patch_size",
type=int,
default=32,
help="the size of patches extracted for each reconstruction",
)
parser.add_argument(
"--patch_offset",
type=int,
default=20,
help="offset to ignore the border of the image",
)
parser.add_argument(
"--number_of_patches",
type=int,
help="number of patches extracted for each image",
)
parser.add_argument(
"--no_shuffle",
action="store_true",
help="do not shuffle patches in the dataset",
)
parser.add_argument(
action="store_true",
help="use the scatter corrected reconstructions in the dataset",
)
# Training Args
parser.add_argument(
"--seed",
type=int,
help="seed used for random number generation",
)
parser.add_argument(
"--batch_size",
type=int,
help="the batch size used for training",
)
parser.add_argument(
"--output_dir",
type=str,
default="train_data",
help="directory in which results (snapshots and logs) of this training are saved",
)
parser.add_argument(
"--epochs",
type=int,
default=100,
help="the number of epochs for which the model is trained",
)
parser.add_argument(
"--device",
type=str,
default="cuda:0" if torch.cuda.is_available() else "cpu",
help="the device (cpu or gpu) with which the training is performed",
)
"--dist_loss_func",
type=str,
default="l1",
help="define the loss function used as the distance loss of the generator , e.g. 0.75*l2+0.25*gdl",
"--dist_loss_weight",
default=100.0,
help="weight for the distance loss of the generator",
)
parser.add_argument(
"--adv_loss_weight",
type=float,
help="weight for the Adversarial-Loss of the generator",
)
parser.add_argument(
"--lr", type=float, default=0.001, help="the initial learning rate for training"
)
parser.add_argument(
"--decay_lr",
action="store_true",
help="decay the learning rate",
)
parser.add_argument(
"--lr_decay_factor",
type=float,
default=0.99,
help="decay factor for the learning rate",
)
parser.add_argument(
"--lr_decay_epoch",
type=int,
default=1,
help="frequency in epochs at which the learning rate is decayed",
)
parser.add_argument(
"--snapshot_dir",
type=str,
default="snapshots",
help="directory under --output_dir where snapshots are stored",
)
parser.add_argument(
"--snapshot_epoch",
type=int,
default=10,
help="frequency in epochs at which snapshots are stored",
)
parser.add_argument(
"--generator_weights",
type=str,
help="use pre-trained weights for the generator",
)
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
# Logging Args
add_logging_args(parser, defaults={"--logfile": "train.log"})
args = parser.parse_args()
if not os.path.exists(args.output_dir):
os.mkdir(args.output_dir)
args.snapshot_dir = os.path.join(args.output_dir, args.snapshot_dir)
if not os.path.exists(args.snapshot_dir):
os.mkdir(args.snapshot_dir)
else:
if len(os.listdir(args.snapshot_dir)) > 0:
print(
f"ATTENTION: Snapshot directory [{args.snapshot_dir}] already exists and is not empty!"
)
print(f" Exit so that data is not accidentally overwritten!")
exit(1)
args.logfile = os.path.join(args.output_dir, args.logfile)
device = torch.device(args.device)
logger = get_logger_by_args(args)
logger.info(args)
args.seed = args.seed if args.seed is not None else random.randint(0, 2**32 - 1)
logger.info(f"Seed: {args.seed}")
random.seed(args.seed)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
transform_normalization = None
if args.input_norm == "mean":
transform_normalization = MeanNormTransform()
elif args.input_norm == "max":
transform_normalization = MaxNormTransform()
elif args.input_norm == "gaussian":
transform_normalization = GaussianNormTransform()
transform_normalization = SequenceTransform(
[transform_normalization, PadCropTranform(dim=3, size=32)]
)
data_loaders = {}
for split in ["train", "validation"]:
dataset = MuMapPatchDataset(
args.dataset_dir,
patches_per_image=args.number_of_patches,
patch_size=args.patch_size,
patch_offset=args.patch_offset,
shuffle=not args.no_shuffle,
split_name=split,
transform_normalization=transform_normalization,
scatter_correction=args.scatter_correction,
logger=logger,
)
data_loader = torch.utils.data.DataLoader(
dataset=dataset,
batch_size=args.batch_size,
shuffle=True,
pin_memory=True,
num_workers=1,
)
data_loaders[split] = data_loader
discriminator = Discriminator(in_channels=2, input_size=args.patch_size)
discriminator = discriminator.to(device)
optimizer = torch.optim.Adam(
discriminator.parameters(), lr=args.lr, betas=(0.5, 0.999)
)
lr_scheduler = (
torch.optim.lr_scheduler.StepLR(
optimizer, step_size=args.lr_decay_epoch, gamma=args.lr_decay_factor
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
)
if args.decay_lr
else None
)
params_d = TrainingParams(
model=discriminator, optimizer=optimizer, lr_scheduler=lr_scheduler
)
generator = UNet(in_channels=1, features=args.features)
generator = generator.to(device)
if args.generator_weights:
logger.debug(f"Load generator weights from {args.generator_weights}")
generator.load_state_dict(
torch.load(args.generator_weights, map_location=device)
)
optimizer = torch.optim.Adam(generator.parameters(), lr=args.lr, betas=(0.5, 0.999))
lr_scheduler = (
torch.optim.lr_scheduler.StepLR(
optimizer, step_size=args.lr_decay_factor, gamma=args.lr_decay_factor
)
if args.decay_lr
else None
)
params_g = TrainingParams(
model=generator, optimizer=optimizer, lr_scheduler=lr_scheduler
)
dist_criterion = WeightedLoss.from_str(args.dist_loss_func)
logger.debug(f"Use distance criterion: {dist_criterion}")
training = cGANTraining(
data_loaders=data_loaders,
epochs=args.epochs,
device=device,
snapshot_dir=args.snapshot_dir,
snapshot_epoch=args.snapshot_epoch,
logger=logger,
params_generator=params_g,
params_discriminator=params_d,
loss_func_dist=dist_criterion,
weight_criterion_dist=args.dist_loss_weight,
weight_criterion_adv=args.adv_loss_weight,