Newer
Older
import matplotlib.pyplot as plt
import numpy as np
import numpy.typing as npt
import torch
import torch.nn.functional as F
from PIL import Image
from torch.optim import Adam
from torch.utils.data import DataLoader, RandomSampler
from torchvision.datasets import ImageFolder
from torchvision.transforms import transforms
device = torch.device("cuda")
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
dx = [+1, 0, -1, 0]
dy = [0, +1, 0, -1]
# perform depth first search for each candidate/unlabeled region
# reference: https://stackoverflow.com/questions/14465297/connected-component-labeling-implementation
def dfs(mask: npt.NDArray, x: int, y: int, labels: npt.NDArray, current_label: int):
n_rows, n_cols = mask.shape
if x < 0 or x == n_rows:
return
if y < 0 or y == n_cols:
return
if labels[x][y] or not mask[x][y]:
return # already labeled or not marked with 1 in image
# mark the current cell
labels[x][y] = current_label
# recursively mark the neighbors
for direction in range(4):
dfs(mask, x + dx[direction], y + dy[direction], labels, current_label)
def find_components(mask: npt.NDArray):
label = 0
n_rows, n_cols = mask.shape
labels = np.zeros(mask.shape, dtype=np.int8)
for i in range(n_rows):
for j in range(n_cols):
if not labels[i][j] and mask[i][j]:
label += 1
dfs(mask, i, j, labels, label)
return labels
# https://stackoverflow.com/questions/31400769/bounding-box-of-numpy-array
def bbox(img):
max_x, max_y = img.shape
rows = np.any(img, axis=1)
cols = np.any(img, axis=0)
rmin, rmax = np.where(rows)[0][[0, -1]]
cmin, cmax = np.where(cols)[0][[0, -1]]
rmin = rmin - 1 if rmin > 0 else rmin
cmin = cmin - 1 if cmin > 0 else cmin
rmax = rmax + 1 if rmax < max_x else rmax
cmax = cmax + 1 if cmax < max_y else cmax
return rmin, rmax, cmin, cmax
def extract_single_masks(labels: npt.NDArray):
masks = []
for l in range(labels.max() + 1):
mask = (labels == l).astype(np.int8)
rmin, rmax, cmin, cmax = bbox(mask)
masks.append(mask[rmin : rmax + 1, cmin : cmax + 1])
return masks
class VAE(nn.Module):
"""
https://github.com/pytorch/examples/blob/main/vae/main.py
"""
def __init__(self, bottleneck=2, image_dim=4096):
super(VAE, self).__init__()
self.bottleneck = bottleneck
self.image_dim = image_dim
self.prelim_encode = nn.Sequential(
nn.Flatten(), nn.Linear(image_dim, 400), nn.ReLU()
)
self.encode_mu = nn.Sequential(nn.Linear(400, bottleneck))
self.encode_logvar = nn.Sequential(nn.Linear(400, bottleneck))
self.decode = nn.Sequential(
nn.Linear(bottleneck, 400),
nn.ReLU(),
nn.Linear(400, image_dim),
nn.Sigmoid(),
)
def encode(self, x):
# h1 = F.relu(self.encode(x))
# return self.encode_mu(h1), self.encode_logvar(h1)
x = self.prelim_encode(x)
return self.encode_mu(x), self.encode_logvar(x)
def reparameterize(self, mu, logvar):
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return mu + eps * std
def forward(self, x):
mu, logvar = self.encode(x)
z = self.reparameterize(mu, logvar)
return self.decode(z), mu, logvar
# Reconstruction + KL divergence losses summed over all elements and batch
def loss(self, recon_x, x, mu, logvar):
BCE = F.binary_cross_entropy(recon_x, x.view(-1, 4096), reduction="sum")
# see Appendix B from VAE paper:
# Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014
# https://arxiv.org/abs/1312.6114
# 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
):
super(CONVVAE, self).__init__()
self.bottleneck = bottleneck
nn.Conv2d(1, 16, 5),
nn.ReLU(),
nn.MaxPool2d((2, 2)), # -> 30x30x16
nn.Conv2d(16, 32, 3),
nn.ReLU(),
nn.MaxPool2d((2, 2)), # -> 14x14x32
nn.Conv2d(32, 64, 3),
nn.ReLU(),
nn.MaxPool2d((2, 2)), # -> 6x6x64
# self.conv4 = nn.Sequential(
# nn.Conv2d(32, self.bottleneck, 5),
# nn.ReLU(),
# nn.MaxPool2d((2, 2), return_indices=True), # -> 1x1xbottleneck
# )
self.decode_linear = nn.Linear(self.bottleneck, self.feature_dim)
# self.decode4 = nn.Sequential(
# nn.ConvTranspose2d(self.bottleneck, 32, 5),
# nn.ReLU(),
# )
nn.ConvTranspose2d(64, 64, 2, stride=2), # -> 12x12x64
nn.ReLU(),
nn.ConvTranspose2d(64, 32, 3), # -> 14x14x32
nn.ConvTranspose2d(32, 32, 2, stride=2), # -> 28x28x32
nn.ReLU(),
nn.ConvTranspose2d(32, 16, 3), # -> 30x30x16
nn.ConvTranspose2d(16, 16, 2, stride=2), # -> 60x60x16
nn.ReLU(),
nn.ConvTranspose2d(16, 1, 5), # -> 64x64x1
z = z.view((-1, 64, 6, 6))
# z = F.max_unpool2d(z, idx4, (2, 2))
# z = self.decode4(z)
z = self.decode3(z)
z = self.decode2(z)
z = self.decode1(z)
# z = z.view(-1, 128, 1, 1)
# return self.decode_conv(z)
return z
def reparameterize(self, mu, logvar):
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return mu + eps * std
def forward(self, x):
def loss(self, recon_x, x, mu, logvar):
"""https://github.com/pytorch/examples/blob/main/vae/main.py"""
BCE = F.binary_cross_entropy(recon_x, x, reduction="sum")
# see Appendix B from VAE paper:
# Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014
# https://arxiv.org/abs/1312.6114
# 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
return BCE + KLD
kernel = torch.ones(5, 5)
def __init__(self, kernel=None):
if kernel is not None:
self.kernel = kernel
def __call__(self, x):
return transforms.F.to_pil_image(
closing(x.unsqueeze(dim=0), self.kernel).squeeze(dim=0)
)
def load_data():
transform = transforms.Compose(
[
transforms.Grayscale(),
transforms.Resize(
(64, 64), interpolation=transforms.InterpolationMode.BILINEAR
),
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.ToTensor(),
]
)
else [
# "v3_subtle_iceberg_lettuce_nymph-6_203-2056",
"v3_absolute_grape_changeling-16_2277-4441",
"v3_content_squash_angel-3_16074-17640",
"v3_smooth_kale_loch_ness_monster-1_4439-6272",
"v3_cute_breadfruit_spirit-6_17090-19102",
"v3_key_nectarine_spirit-2_7081-9747",
"v3_subtle_iceberg_lettuce_nymph-6_3819-6049",
"v3_juvenile_apple_angel-30_396415-398113",
"v3_subtle_iceberg_lettuce_nymph-6_6100-8068",
]
)
datasets = []
for trj in trajectories:
datasets.append(
ImageFolder(
f"activation_vis/out/critic/masks/{trj}/0/4", transform=transform
)
)
datasets.append(
ImageFolder("shape_complexity/data/simple_shapes", transform=transform)
)
dataset = torch.utils.data.ConcatDataset(datasets)
data_loader = DataLoader(dataset, batch_size=128, shuffle=True)
return data_loader, dataset
def train(epoch, model: VAE or CONVVAE, optimizer, data_loader, log_interval=40):
model.train()
train_loss = 0
for batch_idx, (data, _) in enumerate(data_loader):
data = data.to(device)
optimizer.zero_grad()
recon_batch, mu, logvar = model(data)
loss.backward()
train_loss += loss.item()
optimizer.step()
if batch_idx % log_interval == 0:
print(
"Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format(
epoch,
batch_idx * len(data),
len(data_loader.dataset),
100.0 * batch_idx / len(data_loader),
loss.item() / len(data),
)
)
print(
"====> Epoch: {} Average loss: {:.4f}".format(
epoch, train_loss / len(data_loader.dataset)
)
)
def test(epoch, models: list[CONVVAE] or list[VAE], dataset, save_results=False):
for model in models:
model.eval()
test_loss = [0 for _ in models]
test_batch_size = 32
sampler = RandomSampler(dataset, replacement=True, num_samples=64)
test_loader = DataLoader(dataset, batch_size=test_batch_size, sampler=sampler)
comp_data = None
with torch.no_grad():
for i, (data, _) in enumerate(test_loader):
data = data.to(device)
for j, model in enumerate(models):
recon_batch, mu, logvar = model(data)
test_loss[j] += model.loss(recon_batch, data, mu, logvar).item()
if i == 0:
n = min(data.size(0), 20)
if comp_data == None:
comp_data = data[:n]
comp_data = torch.cat(
[comp_data, recon_batch.view(test_batch_size, 1, 64, 64)[:n]]
)
if not os.path.exists("results"):
os.makedirs("results")
save_image(
comp_data.cpu(),
"results/reconstruction_" + str(epoch) + ".png",
nrow=min(data.size(0), 20),
)
for i, model in enumerate(models):
test_loss[i] /= len(test_loader.dataset)
print(f"====> Test set loss model {model.bottleneck}: {test_loss[i]:.4f}")
if save_results:
plt.figure()
bns = [m.bottleneck for m in models]
plt.plot(bns, test_loss)
plt.xticks(bns)
plt.savefig("shape_complexity/results/vae_graph.png")
plt.clf()
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
def test_mask(model: nn.Module, path: str, label: int, epsilon=0.4):
model.eval()
image = transforms.F.to_tensor(transforms.F.to_grayscale(Image.open(path)))
labels = find_components(image[0])
single_masks = extract_single_masks(labels)
mask = transforms.F.to_tensor(
transforms.F.resize(
transforms.F.to_pil_image((single_masks[label] * 255).astype(np.uint8)),
(64, 64),
)
)
with torch.no_grad():
mask = mask.to(device)
recon_x, _, _ = model(mask)
recon_bits = recon_x.view(64, 64).cpu().numpy() > epsilon
mask_bits = mask.cpu().numpy() > 0
TP = (mask_bits & recon_bits).sum()
FP = (recon_bits & ~mask_bits).sum()
FN = (mask_bits & ~recon_bits).sum()
prec = TP / (TP + FP)
rec = TP / (TP + FN)
# loss = pixelwise_loss(recon_x, mask)
comp_data = torch.cat(
[mask[0].cpu(), recon_x.view(64, 64).cpu(), torch.from_numpy(recon_bits)]
)
# print(f"mask loss: {loss:.4f}")
return prec, rec, comp_data
def distance_measure(model: VAE, img: Tensor):
model.eval()
with torch.no_grad():
mask = img.to(device)
recon, mean, _ = model(mask)
# TODO: apply threshold here?!
_, recon_mean, _ = model(recon)
distance = torch.norm(mean - recon_mean, p=2)
return (
distance,
make_grid(torch.stack([mask[0], recon[0]]).cpu(), nrow=2, padding=0),
def compression_complexity(img: Tensor):
np_img = img[0].numpy()
compressed = compress(np_img)
return len(compressed)
def fft_measure(img: Tensor):
np_img = img[0][0].numpy()
fft = np.fft.fft2(np_img)
n = fft.shape[0]
pos_f_idx = n // 2
df = np.fft.fftfreq(n=n)
amplitude_sum = fft_abs[:pos_f_idx, :pos_f_idx].sum()
mean_x_freq = (fft_abs * df)[:pos_f_idx, :pos_f_idx].sum() / amplitude_sum
mean_y_freq = (fft_abs.T * df).T[:pos_f_idx, :pos_f_idx].sum() / amplitude_sum
mean_freq = np.sqrt(np.power(mean_x_freq, 2) + np.power(mean_y_freq, 2))
# mean frequency in range 0 to 0.5
return mean_freq / 0.5
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
def complexity_measure(
model_gb: nn.Module,
model_lb: nn.Module,
img: Tensor,
epsilon=0.4,
save_preliminary=False,
):
model_gb.eval()
model_lb.eval()
with torch.no_grad():
mask = img.to(device)
recon_gb, _, _ = model_gb(mask)
recon_lb, _, _ = model_lb(mask)
recon_bits_gb = recon_gb.view(-1, 64, 64).cpu() > epsilon
recon_bits_lb = recon_lb.view(-1, 64, 64).cpu() > epsilon
mask_bits = mask[0].cpu() > 0
if save_preliminary:
save_image(
torch.stack(
[mask_bits.float(), recon_bits_gb.float(), recon_bits_lb.float()]
).cpu(),
f"shape_complexity/results/mask_recon{model_gb.bottleneck}_{model_lb.bottleneck}.png",
)
save_image(
torch.stack(
[
(mask_bits & recon_bits_gb).float(),
(recon_bits_gb & ~mask_bits).float(),
(mask_bits & recon_bits_lb).float(),
(recon_bits_lb & ~mask_bits).float(),
]
).cpu(),
f"shape_complexity/results/tp_fp_recon{model_gb.bottleneck}_{model_lb.bottleneck}.png",
)
tp_gb = (mask_bits & recon_bits_gb).sum()
fp_gb = (recon_bits_gb & ~mask_bits).sum()
tp_lb = (mask_bits & recon_bits_lb).sum()
fp_lb = (recon_bits_lb & ~mask_bits).sum()
prec_gb = tp_gb / (tp_gb + fp_gb)
prec_lb = tp_lb / (tp_lb + fp_lb)
complexity = 1 - (prec_gb - np.abs(prec_gb - prec_lb))
complexity_lb = 1 - prec_lb
complexity_gb = 1 - prec_gb
# 1 - (0.4 - abs(0.4 - 0.7)) = 0.9
# 1 - 0.7 = 0.3
return (
complexity,
complexity_lb,
complexity_gb,
prec_gb - prec_lb,
prec_lb,
prec_gb,
make_grid(
torch.stack(
[mask[0], recon_lb.view(-1, 64, 64), recon_gb.view(-1, 64, 64)]
).cpu(),
nrow=3,
padding=0,
),
)
def mean_precision(models: list[nn.Module], img: Tensor, epsilon=0.4):
mask = img.to(device)
mask_bits = mask[0].cpu() > 0
precisions = np.zeros(len(models))
for i, model in enumerate(models):
recon_gb, _, _ = model(mask)
recon_bits = recon_gb.view(-1, 64, 64).cpu() > epsilon
tp = (mask_bits & recon_bits).sum()
fp = (recon_bits & ~mask_bits).sum()
prec = tp / (tp + fp)
precisions[i] = prec
return 1 - precisions.mean()
):
model_gb.eval()
model_lb.eval()
with torch.no_grad():
mask = img.to(device)
recon_gb, _, _ = model_gb(mask)
recon_lb, _, _ = model_lb(mask)
diff = torch.abs((recon_gb - recon_lb).cpu().sum())
return (
diff,
make_grid(
torch.stack(
[mask[0], recon_lb.view(-1, 64, 64), recon_gb.view(-1, 64, 64)]
).cpu(),
nrow=3,
padding=0,
),
)
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
def plot_samples(masks: Tensor, complexities: npt.NDArray):
dpi = 150
rows = cols = 20
total = rows * cols
n_samples, _, y, x = masks.shape
extent = (0, x - 1, 0, y - 1)
if total != n_samples:
raise Exception("shape mismatch")
fig = plt.figure(figsize=(32, 16), dpi=dpi)
for idx in np.arange(n_samples):
ax = fig.add_subplot(rows, cols, idx + 1, xticks=[], yticks=[])
plt.imshow(masks[idx][0], cmap=plt.cm.gray, extent=extent)
ax.set_title(
f"{complexities[idx]:.4f}",
fontdict={"fontsize": 6, "color": "orange"},
y=0.35,
)
fig.patch.set_facecolor("#292929")
height_px = y * rows
width_px = x * cols
fig.set_size_inches(width_px / (dpi / 2), height_px / (dpi / 2), forward=True)
fig.tight_layout(pad=0)
return fig
def visualize_sort_mean(data_loader: DataLoader, model: VAE):
recon_masks = torch.zeros((400, 3, 64, 128))
masks = torch.zeros((400, 1, 64, 64))
distances = torch.zeros((400,))
for i, (mask, _) in enumerate(data_loader, 0):
distance, mask_recon_grid = distance_measure(model, mask)
distances[i] = distance
sort_idx = torch.argsort(distances)
masks_sorted = masks.numpy()[sort_idx]
plt.plot(np.arange(len(distances)), np.sort(distances.numpy()))
plt.savefig("shape_complexity/results/distance_plot.png")
return (
plot_samples(masks_sorted, distances.numpy()[sort_idx]),
plot_samples(recon_masks_sorted, distances.numpy()[sort_idx]),
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
def visualize_sort_compression(data_loader: DataLoader):
masks = torch.zeros((400, 1, 64, 64))
distances = torch.zeros((400,))
for i, (mask, _) in enumerate(data_loader, 0):
masks[i] = mask[0]
distances[i] = compression_complexity(mask)
sort_idx = torch.argsort(distances)
masks_sorted = masks.numpy()[sort_idx]
plt.plot(np.arange(len(distances)), np.sort(distances.numpy()))
plt.xlabel("images")
plt.ylabel("compression length")
plt.savefig("shape_complexity/results/compression_plot.png")
return plot_samples(masks_sorted, distances.numpy()[sort_idx])
def visualize_sort_fft(data_loader: DataLoader):
masks = torch.zeros((400, 1, 64, 64))
distances = torch.zeros((400,))
for i, (mask, _) in enumerate(data_loader, 0):
masks[i] = mask[0]
distances[i] = fft_measure(mask)
sort_idx = torch.argsort(distances)
masks_sorted = masks.numpy()[sort_idx]
plt.plot(np.arange(len(distances)), np.sort(distances.numpy()))
plt.xlabel("images")
plt.savefig("shape_complexity/results/fft_plot.png")
return plot_samples(masks_sorted, distances.numpy()[sort_idx])
def visualize_sort_mean_precision(models: list[nn.Module], data_loader: DataLoader):
masks = torch.zeros((400, 1, 64, 64))
precisions = torch.zeros((400,))
for i, (mask, _) in enumerate(data_loader, 0):
masks[i] = mask[0]
precisions[i] = mean_precision(models, mask)
sort_idx = torch.argsort(precisions)
masks_sorted = masks.numpy()[sort_idx]
plt.plot(np.arange(len(precisions)), np.sort(precisions.numpy()))
plt.xlabel("images")
plt.ylabel("mean precision")
plt.savefig("shape_complexity/results/mean_prec_plot.png")
return plot_samples(masks_sorted, precisions.numpy()[sort_idx])
def visualize_sort_diff(data_loader, model_gb: nn.Module, model_lb: nn.Module):
masks_recon = torch.zeros((400, 3, 64, 192))
masks = torch.zeros((400, 1, 64, 64))
diffs = torch.zeros((400,))
for i, (mask, _) in enumerate(data_loader, 0):
diff, mask_recon_grid = complexity_measure_diff(model_gb, model_lb, mask)
masks_recon[i] = mask_recon_grid
masks[i] = mask[0]
diffs[i] = diff
sort_idx = np.argsort(np.array(diffs))
recon_masks_sorted = masks_recon.numpy()[sort_idx]
masks_sorted = masks.numpy()[sort_idx]
plt.plot(np.arange(len(diffs)), np.sort(diffs))
plt.xlabel("images")
plt.ylabel("pixelwise difference of reconstructions")
plt.savefig("shape_complexity/results/px_diff_plot.png")
return (
plot_samples(masks_sorted, diffs[sort_idx]),
plot_samples(recon_masks_sorted, diffs[sort_idx]),
def visualize_sort_3dim(
data_loader: DataLoader, model_gb: nn.Module, model_lb: nn.Module
):
masks_recon = torch.zeros((400, 3, 64, 192))
masks = torch.zeros((400, 1, 64, 64))
measures = torch.zeros((400, 3))
for i, (mask, _) in enumerate(data_loader, 0):
c_compress = compression_complexity(mask)
c_fft = fft_measure(mask)
# TODO: maybe exchange by diff or mean measure instead of precision
c_vae, _, _, _, _, _, mask_recon_grid = complexity_measure(
model_gb, model_lb, mask
)
masks_recon[i] = mask_recon_grid
masks[i] = mask[0]
measures[i] = torch.tensor([c_compress, c_fft, c_vae])
measures[:] /= measures.max(dim=0).values
measure_norm = torch.linalg.vector_norm(measures, dim=1)
ax.scatter(measures[:, 0], measures[:, 1], measures[:, 2], marker="o")
ax.set_xlabel("zlib compression")
ax.set_ylabel("FFT ratio")
ax.set_zlabel(f"VAE ratio {model_gb.bottleneck}/{model_lb.bottleneck}")
sort_idx = np.argsort(np.array(measure_norm))
recon_masks_sorted = masks_recon.numpy()[sort_idx]
masks_sorted = masks.numpy()[sort_idx]
return (
plot_samples(masks_sorted, measure_norm[sort_idx]),
plot_samples(recon_masks_sorted, measure_norm[sort_idx]),
def visualize_sort(dataset, model_gb: nn.Module, model_lb: nn.Module):
sampler = RandomSampler(dataset, replacement=True, num_samples=400)
data_loader = DataLoader(dataset, batch_size=1, sampler=sampler)
masks = torch.zeros((400, 3, 64, 192))
complexities = torch.zeros((400,))
diffs = []
for i, (mask, _) in enumerate(data_loader, 0):
complexity, _, _, diff, mask_recon_grid = complexity_measure(
model_gb, model_lb, mask, save_preliminary=True
)
masks[i] = mask_recon_grid
diffs.append(diff)
complexities[i] = complexity
sort_idx = np.argsort(np.array(complexities))
masks_sorted = masks.numpy()[sort_idx]
plt.plot(np.arange(len(diffs)), np.sort(diffs))
plt.savefig("shape_complexity/results/diff_plot.png")
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
return plot_samples(masks_sorted, complexities[sort_idx])
def visualize_sort_fixed(data_loader, model_gb: nn.Module, model_lb: nn.Module):
masks = torch.zeros((400, 3, 64, 192))
complexities = torch.zeros((400,))
complexities_lb = torch.zeros((400,))
complexities_gb = torch.zeros((400,))
diffs = []
prec_lbs = []
prec_gbs = []
for i, (mask, _) in enumerate(data_loader, 0):
(
complexity,
lb,
gb,
diff,
prec_lb,
prec_gb,
mask_recon_grid,
) = complexity_measure(model_gb, model_lb, mask, save_preliminary=True)
masks[i] = mask_recon_grid
diffs.append(diff)
prec_lbs.append(prec_lb)
prec_gbs.append(prec_gb)
complexities[i] = complexity
complexities_lb[i] = lb
complexities_gb[i] = gb
sort_idx = np.argsort(np.array(complexities))
sort_idx_lb = np.argsort(np.array(complexities_lb))
sort_idx_gb = np.argsort(np.array(complexities_gb))
masks_sorted = masks.numpy()[sort_idx]
masks_sorted_lb = masks.numpy()[sort_idx_lb]
masks_sorted_gb = masks.numpy()[sort_idx_gb]
diff_sort_idx = np.argsort(diffs)
# plt.savefig("shape_complexity/results/diff_plot.png")
# plt.clf
fig, ax1 = plt.subplots()
ax2 = ax1.twinx()
ax1.plot(
np.arange(len(prec_lbs)),
np.array(prec_lbs)[diff_sort_idx],
label=f"bottleneck {model_lb.bottleneck}",
)
ax1.plot(
np.arange(len(prec_gbs)),
np.array(prec_gbs)[diff_sort_idx],
label=f"bottleneck {model_gb.bottleneck}",
)
ax2.plot(
np.arange(len(diffs)),
np.sort(diffs),
color="red",
label="prec difference (H - L)",
ax1.legend(loc="lower left")
ax2.legend(loc="lower right")
ax1.set_ylabel("precision")
ax2.set_ylabel("prec difference (H-L)")
plt.savefig("shape_complexity/results/prec_plot.png")
plt.clf()
fig = plot_samples(masks_sorted, complexities[sort_idx])
fig.savefig("shape_complexity/results/abs.png")
plt.close(fig)
fig = plot_samples(masks_sorted_lb, complexities_lb[sort_idx_lb])
fig.savefig("shape_complexity/results/lb.png")
plt.close(fig)
fig = plot_samples(masks_sorted_gb, complexities_gb[sort_idx_gb])
fig.savefig("shape_complexity/results/gb.png")
plt.close(fig)
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
def visualize_sort_group(data_loader, model_gb: nn.Module, model_lb: nn.Module):
recon_masks = torch.zeros((400, 3, 64, 192))
masks = torch.zeros((400, 1, 64, 64))
complexities = torch.zeros((400,))
diffs = np.zeros((400,))
prec_gbs = np.zeros((400,))
prec_lbs = np.zeros((400,))
for i, (mask, _) in enumerate(data_loader, 0):
(
complexity,
_,
_,
diff,
prec_lb,
prec_gb,
mask_recon_grid,
) = complexity_measure(model_gb, model_lb, mask, save_preliminary=True)
recon_masks[i] = mask_recon_grid
masks[i] = mask[0]
diffs[i] = diff
prec_gbs[i] = prec_gb
prec_lbs[i] = prec_lb
complexities[i] = complexity
sort_idx = np.argsort(np.array(complexities))
masks_sorted = masks.numpy()[sort_idx]
recon_masks_sorted = recon_masks.numpy()[sort_idx]
# group_labels = ["lte_0", "gt_0_lte0.05", "gt_0.05"]
# bin_edges = [-np.inf, 0.0, 0.05, np.inf]
# bins = np.digitize(diffs, bins=bin_edges, right=True)
# for i in range(bins.min(), bins.max() + 1):
# bin_idx = bins == i
# binned_prec_gb = prec_gbs[bin_idx]
# prec_mean = binned_prec_gb.mean()
# prec_idx = prec_gbs > prec_mean
# binned_masks_high = recon_masks[bin_idx & prec_idx]
# binned_masks_low = recon_masks[bin_idx & ~prec_idx]
# save_image(
# binned_masks_high,
# f"shape_complexity/results/diff_{group_labels[i-1]}_high.png",
# padding=10,
# )
# save_image(
# binned_masks_low,
# f"shape_complexity/results/diff_{group_labels[i-1]}_low.png",
# padding=10,
# )
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
# diff_sort_idx = np.argsort(diffs)
# fig, ax1 = plt.subplots()
# ax2 = ax1.twinx()
# ax1.plot(
# np.arange(len(prec_lbs)),
# np.array(prec_lbs)[diff_sort_idx],
# label=f"bottleneck {model_lb.bottleneck}",
# )
# ax1.plot(
# np.arange(len(prec_gbs)),
# np.array(prec_gbs)[diff_sort_idx],
# label=f"bottleneck {model_gb.bottleneck}",
# )
# ax2.plot(
# np.arange(len(diffs)),
# np.sort(diffs),
# color="red",
# label="prec difference (H - L)",
# )
# ax1.legend(loc="lower left")
# ax2.legend(loc="lower right")
# ax1.set_ylabel("precision")
# ax2.set_ylabel("prec difference (H-L)")
# ax1.set_xlabel("image")
# plt.savefig("shape_complexity/results/prec_plot.png")
# plt.tight_layout(pad=2)
# plt.clf()
fig = plot_samples(recon_masks_sorted, complexities[sort_idx])
fig.savefig("shape_complexity/results/abs_recon.png")
plt.close(fig)
fig = plot_samples(masks_sorted, complexities[sort_idx])
fig.savefig("shape_complexity/results/abs.png")
plt.close(fig)
def main():
models = {i: CONVVAE(bottleneck=i).to(device) for i in bottlenecks}
optimizers = {i: Adam(model.parameters(), lr=LR) for i, model in models.items()}
data_loader, dataset = load_data()
train_size = int(0.8 * len(dataset))
test_size = len(dataset) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(
dataset, [train_size, test_size]
)
train_loader = DataLoader(train_dataset, batch_size=256, shuffle=True)
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
if LOAD_PRETRAINED:
for i, model in models.items():
model.load_state_dict(
torch.load(f"shape_complexity/trained/CONVVAE_{i}_split_data.pth")
)
else:
for epoch in range(EPOCHS):
for i, model in models.items():
train(
epoch,
model=model,
optimizer=optimizers[i],
data_loader=train_loader,
)
test(epoch, models=list(models.values()), dataset=test_dataset)
for bn in bottlenecks:
if not os.path.exists("shape_complexity/trained"):
os.makedirs("shape_complexity/trained")
torch.save(
models[bn].state_dict(),
f"shape_complexity/trained/CONVVAE_{bn}_split_data.pth",
)
test(0, models=list(models.values()), dataset=test_dataset, save_results=True)