Newer
Older
import argparse
from datetime import datetime, timedelta
from enum import Enum
import os
import numpy as np
import pandas as pd
import pydicom
from mu_map.logging import add_logging_args, get_logger_by_args
STUDY_DESCRIPTION = "µ-map_study"
class MyocardialProtocol(Enum):
Stress = 1
Rest = 2
headers = argparse.Namespace()
headers.id = "id"
headers.patient_id = "patient_id"
headers.age = "age"
headers.weight = "weight"
headers.size = "size"
headers.protocol = "protocol"
headers.datetime_acquisition = "datetime_acquisition"
headers.datetime_reconstruction = "datetime_reconstruction"
headers.pixel_spacing_x = "pixel_spacing_x"
headers.pixel_spacing_y = "pixel_spacing_y"
headers.pixel_spacing_z = "pixel_spacing_z"
headers.shape_x = "shape_x"
headers.shape_y = "shape_y"
headers.shape_z = "shape_z"
headers.radiopharmaceutical = "radiopharmaceutical"
headers.radionuclide_dose = "radionuclide_dose"
headers.radionuclide_code = "radionuclide_code"
headers.radionuclide_meaning = "radionuclide_meaning"
headers.energy_window_peak_lower = "energy_window_peak_lower"
headers.energy_window_peak_upper = "energy_window_peak_upper"
headers.energy_window_scatter_lower = "energy_window_scatter_lower"
headers.energy_window_scatter_upper = "energy_window_scatter_upper"
headers.detector_count = "detector_count"
headers.collimator_type = "collimator_type"
headers.rotation_start = "rotation_start"
headers.rotation_step = "rotation_step"
headers.rotation_scan_arc = "rotation_scan_arc"
headers.file_projection = "file_projection"

Tamino Huxohl
committed
headers.file_recon_ac_sc = "file_recon_ac_sc"
headers.file_recon_nac_sc = "file_recon_nac_sc"
headers.file_recon_ac_nsc = "file_recon_ac_nsc"
headers.file_recon_nac_nsc = "file_recon_nac_nsc"
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
headers.file_mu_map = "file_mu_map"
def parse_series_time(dicom_image: pydicom.dataset.FileDataset) -> datetime:
"""
Parse the date and time of a DICOM series object into a datetime object.
:param dicom_image: the dicom file to parse the series date and time from
:return: an according python datetime object.
"""
_date = dicom_image.SeriesDate
_time = dicom_image.SeriesTime
return datetime(
year=int(_date[0:4]),
month=int(_date[4:6]),
day=int(_date[6:8]),
hour=int(_time[0:2]),
minute=int(_time[2:4]),
second=int(_time[4:6]),
microsecond=int(_time.split(".")[1]),
)
def parse_age(patient_age: str) -> int:
"""
Parse and age string as defined in the DICOM standard into an integer representing the age in years.
:param patient_age: age string as defined in the DICOM standard
:return: the age in years as a number
"""
assert (
type(patient_age) == str
), f"patient age needs to be a string and not {type(patient_age)}"
assert (
len(patient_age) == 4
), f"patient age [{patient_age}] has to be four characters long"
_num, _format = patient_age[:3], patient_age[3]
assert (
_format == "Y"
), f"currently, only patient ages in years [Y] is supported, not [{_format}]"
return int(_num)

Tamino Huxohl
committed
def get_projections(
dicom_images: List[pydicom.dataset.FileDataset], protocol: MyocardialProtocol
) -> pydicom.dataset.FileDataset:
"""
Extract the SPECT projection from a list of DICOM images belonging to a myocardial scintigraphy study given a study protocol.
:param dicom_images: list of DICOM images of a study
:param protocol: the protocol for which the projection images should be extracted
:return: the extracted DICOM image
"""
_filter = filter(lambda image: "TOMO" in image.ImageType, dicom_images)
_filter = filter(lambda image: protocol.name in image.SeriesDescription, _filter)
dicom_images = list(_filter)

Tamino Huxohl
committed
if len(dicom_images) == 0:
raise ValueError(f"No projection for protocol {protocol.name} available")

Tamino Huxohl
committed
return dicom_images

Tamino Huxohl
committed
def get_reconstructions(
dicom_images: List[pydicom.dataset.FileDataset],
protocol: MyocardialProtocol,

Tamino Huxohl
committed
scatter_corrected: bool,
attenuation_corrected: bool,
) -> pydicom.dataset.FileDataset:
"""
Extract a SPECT reconstruction from a list of DICOM images belonging to a myocardial scintigraphy study given a study protocol.
The corrected flag can be used to either extract an attenuation corrected or a non-attenuation corrected image.
If there are multiple images, they are sorted by acquisition date and the newest is returned.
:param dicom_images: list of DICOM images of a study
:param protocol: the protocol for which the projection images should be extracted

Tamino Huxohl
committed
:param attenuation_corrected: extract an attenuation or non-attenuation corrected image
:param scatter_corrected: extract the image to which scatter correction was applied
:return: the extracted DICOM image
"""
_filter = filter(lambda image: "RECON TOMO" in image.ImageType, dicom_images)

Tamino Huxohl
committed
_filter = filter(lambda image: protocol.name in image.SeriesDescription, _filter)
_filter = filter(
lambda image: STUDY_DESCRIPTION in image.SeriesDescription, _filter

Tamino Huxohl
committed
if scatter_corrected and attenuation_corrected:
filter_str = " SC - AC "
elif not scatter_corrected and attenuation_corrected:
filter_str = " NoSC - AC "
elif scatter_corrected and not attenuation_corrected:
filter_str = " SC - NoAC "
elif not scatter_corrected and not attenuation_corrected:
filter_str = " NoSC - NoAC "
_filter = filter(lambda image: filter_str in image.SeriesDescription, _filter)
# for SPECT reconstructions created in clinical studies this value exists and is set to 'APEX_TO_BASE'
# for the reconstructions with attenuation maps it does not exist

Tamino Huxohl
committed
# _filter = filter(
# lambda image: not hasattr(image, "SliceProgressionDirection"), _filter
# )
if len(dicom_images) == 0:

Tamino Huxohl
committed
f"'{filter_str}' Reconstruction for protocol {protocol.name} is not available"

Tamino Huxohl
committed
return dicom_images

Tamino Huxohl
committed
def get_attenuation_maps(
dicom_images: List[pydicom.dataset.FileDataset], protocol: MyocardialProtocol
) -> pydicom.dataset.FileDataset:
"""
Extract an attenuation map from a list of DICOM images belonging to a myocardial scintigraphy study given a study protocol.
If there are multiple attenuation maps, they are sorted by acquisition date and the newest is returned.
:param dicom_images: list of DICOM images of a study
:param protocol: the protocol for which the projection images should be extracted
:return: the extracted DICOM image
"""
_filter = filter(lambda image: "RECON TOMO" in image.ImageType, dicom_images)

Tamino Huxohl
committed
_filter = filter(lambda image: protocol.name in image.SeriesDescription, _filter)

Tamino Huxohl
committed
lambda image: STUDY_DESCRIPTION in image.SeriesDescription, _filter
_filter = filter(lambda image: " µ-map]" in image.SeriesDescription, _filter)

Tamino Huxohl
committed
dicom_images = list(_filter)
if len(dicom_images) == 0:
raise ValueError(
f"Attenuation map for protocol {protocol.name} is not available"
)

Tamino Huxohl
committed
return dicom_images
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Prepare a dataset from DICOM directories",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"dicom_dirs",
type=str,
nargs="+",
help="paths to DICOMDIR files or directories containing one of them",
)
parser.add_argument(
"--dataset_dir",
type=str,
required=True,
help="directory where images, meta-information and the logs are stored",
)
parser.add_argument(
"--images_dir",
type=str,
default="images",
help="sub-directory of --dataset_dir where images are stored",
)
parser.add_argument(
"--meta_csv",
type=str,
default="meta.csv",
help="CSV file under --dataset_dir where meta-information is stored",
)
add_logging_args(
parser, defaults={"--logfile": "prepare.log", "--loglevel": "DEBUG"}
)
args = parser.parse_args()
args.dicom_dirs = [
(os.path.dirname(_file) if os.path.isfile(_file) else _file)
for _file in args.dicom_dirs
]
args.images_dir = os.path.join(args.dataset_dir, args.images_dir)
args.meta_csv = os.path.join(args.dataset_dir, args.meta_csv)
args.logfile = os.path.join(args.dataset_dir, args.logfile)
if not os.path.exists(args.dataset_dir):
os.mkdir(args.dataset_dir)
if not os.path.exists(args.images_dir):
os.mkdir(args.images_dir)
global logger
logger = get_logger_by_args(args)
try:
patients = []
dicom_dir_by_patient: Dict[str, str] = {}
for dicom_dir in args.dicom_dirs:
dataset = pydicom.dcmread(os.path.join(dicom_dir, "DICOMDIR"))
for patient in dataset.patient_records:
assert (
patient.PatientID not in dicom_dir_by_patient
), f"Patient {patient.PatientID} is contained twice in the given DICOM directories ({dicom_dir} and {dicom_dir_by_patient[patient.PatientID]})"
dicom_dir_by_patient[patient.PatientID] = dicom_dir
patients.append(patient)
_id = 1
if os.path.exists(args.meta_csv):
data = pd.read_csv(args.meta_csv)
_id = int(data[headers.id].max())
else:
data = pd.DataFrame(dict([(key, []) for key in vars(headers).keys()]))
for i, patient in enumerate(patients, start=1):
logger.debug(f"Process patient {str(i):>3}/{len(patients)}:")
# get all myocardial scintigraphy studies
studies = list(
lambda child: child.DirectoryRecordType == "STUDY",

Tamino Huxohl
committed
# and child.StudyDescription == "Myokardszintigraphie", # filter is disabled because there is a study without this description and only such studies are exported anyway
# extract all dicom images
dicom_images = []
for study in studies:
series = list(

Tamino Huxohl
committed
lambda child: child.DirectoryRecordType == "SERIES",
study.children,
for _series in series:
images = list(
filter(
lambda child: child.DirectoryRecordType == "IMAGE",
_series.children,
)
)
# all SPECT data is stored as a single 3D array which means that it is a series with a single image
# this is not the case for CTs, which are skipped here
if len(images) != 1:
continue
images = list(
map(
lambda image: pydicom.dcmread(
os.path.join(
dicom_dir_by_patient[patient.PatientID],
*image.ReferencedFileID,
),
stop_before_pixels=True,
if len(images) == 0:
continue
dicom_images.append(images[0])
for protocol in MyocardialProtocol:
if (
len(
data[

Tamino Huxohl
committed
(data[headers.patient_id] == int(patient.PatientID))
& (data[headers.protocol] == protocol.name)
]
)
> 0
):
logger.info(
f"Skip {patient.PatientID}:{protocol.name} since it is already contained in the dataset"
)
continue

Tamino Huxohl
committed
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
extractions = [
{
"function": get_projections,
"kwargs": {},
"reconstruction": False,
"prefix": "projection",
"header": headers.file_projection,
},
{
"function": get_reconstructions,
"kwargs": {
"attenuation_corrected": True,
"scatter_corrected": True,
},
"reconstruction": True,
"prefix": "recon_ac_sc",
"header": headers.file_recon_ac_sc,
},
{
"function": get_reconstructions,
"kwargs": {
"attenuation_corrected": True,
"scatter_corrected": False,
},
"reconstruction": True,
"prefix": "recon_ac_nsc",
"header": headers.file_recon_ac_nsc,
},
{
"function": get_reconstructions,
"kwargs": {
"attenuation_corrected": False,
"scatter_corrected": True,
},
"reconstruction": True,
"prefix": "recon_nac_sc",
"header": headers.file_recon_nac_sc,
},
{
"function": get_reconstructions,
"kwargs": {
"attenuation_corrected": False,
"scatter_corrected": False,
},
"reconstruction": True,
"prefix": "recon_nac_nsc",
"header": headers.file_recon_nac_nsc,
},
{
"function": get_attenuation_maps,
"kwargs": {},
"reconstruction": True,
"prefix": "mu_map",
"header": headers.file_mu_map,
},
]

Tamino Huxohl
committed
for extrac in extractions:
_images = extrac["function"](
dicom_images, protocol=protocol, **extrac["kwargs"]
)
_images.sort(key=parse_series_time)
extrac["images"] = _images

Tamino Huxohl
committed
logger.info(
f"Skip {patient.PatientID}:{protocol.name} because {e}"
)

Tamino Huxohl
committed
num_images = min(
list(map(lambda extrac: len(extrac["images"]), extractions))

Tamino Huxohl
committed
# ATTENTION: this is a special filter for mu maps which could have been saved from previous test runs of the workflow
# this filter only keeps the most recent ones
if num_images < len(extractions[-1]["images"]):
_len = len(extractions[-1]["images"])
extractions[-1]["images"] = extractions[-1]["images"][
(_len - num_images) :

Tamino Huxohl
committed
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
for j in range(num_images):
_recon_images = filter(
lambda extrac: extrac["reconstruction"], extractions
)
recon_images = list(
map(lambda extrac: extrac["images"][j], _recon_images)
)
# extract date times and assert that they are equal for all reconstruction images
datetimes = list(map(parse_series_time, recon_images))
_datetimes = sorted(datetimes, reverse=True)
_datetimes_delta = list(
map(lambda dt: _datetimes[0] - dt, _datetimes)
)
# note: somehow the images receive slightly different timestamps, maybe this depends on time to save and computation time
# thus, a 10 minute interval is allowed here
_equal = all(
map(lambda dt: dt < timedelta(minutes=10), _datetimes_delta)
)
assert (
_equal
), f"Not all dates and times of the reconstructions are equal: {datetimes}"
# extract pixel spacings and assert that they are equal for all reconstruction images
_map_lists = map(
lambda image: [*image.PixelSpacing, image.SliceThickness],
recon_images,
)
_map_lists = map(
lambda pixel_spacing: list(map(float, pixel_spacing)),
_map_lists,
)
_map_ndarrays = map(
lambda pixel_spacing: np.array(pixel_spacing), _map_lists
)
pixel_spacings = list(_map_ndarrays)
_equal = all(
map(
lambda pixel_spacing: (
pixel_spacing == pixel_spacings[0]
).all(),
pixel_spacings,
)
)
assert (
_equal
), f"Not all pixel spacings of the reconstructions are equal: {pixel_spacings}"
pixel_spacing = pixel_spacings[0]
# use the shape with the fewest slices, all other images will be aligned to that
_map_lists = map(
lambda image: [
image.Rows,
image.Columns,
image.NumberOfSlices,
],
recon_images,
)
_map_lists = map(
lambda shape: list(map(int, shape)), _map_lists
)
_map_ndarrays = map(lambda shape: np.array(shape), _map_lists)
shapes = list(_map_ndarrays)
shapes.sort(key=lambda shape: shape[2])
shape = shapes[0]
projection_image = extractions[0]["images"][j]
# extract and sort energy windows
energy_windows = (
projection_image.EnergyWindowInformationSequence
)
energy_windows = map(
lambda ew: ew.EnergyWindowRangeSequence[0], energy_windows
)
energy_windows = map(
lambda ew: (
float(ew.EnergyWindowLowerLimit),
float(ew.EnergyWindowUpperLimit),
),
energy_windows,
)
energy_windows = list(energy_windows)
energy_windows.sort(key=lambda ew: ew[0], reverse=True)
row = {
headers.id: _id,
headers.patient_id: projection_image.PatientID,
headers.age: parse_age(projection_image.PatientAge),
headers.weight: float(projection_image.PatientWeight),
headers.size: float(projection_image.PatientSize),
headers.protocol: protocol.name,
headers.datetime_acquisition: parse_series_time(
projection_image
),
headers.datetime_reconstruction: datetimes[0],
headers.pixel_spacing_x: pixel_spacing[0],
headers.pixel_spacing_y: pixel_spacing[1],
headers.pixel_spacing_z: pixel_spacing[2],
headers.shape_x: shape[0],
headers.shape_y: shape[1],
headers.shape_z: shape[2],
headers.radiopharmaceutical: projection_image.RadiopharmaceuticalInformationSequence[
0
].Radiopharmaceutical,
headers.radionuclide_dose: projection_image.RadiopharmaceuticalInformationSequence[
0
].RadionuclideTotalDose,
headers.radionuclide_code: projection_image.RadiopharmaceuticalInformationSequence[
0
]
.RadionuclideCodeSequence[0]
.CodeValue,
headers.radionuclide_meaning: projection_image.RadiopharmaceuticalInformationSequence[
0
]
.RadionuclideCodeSequence[0]
.CodeMeaning,
headers.energy_window_peak_lower: energy_windows[0][0],
headers.energy_window_peak_upper: energy_windows[0][1],
headers.energy_window_scatter_lower: energy_windows[1][0],
headers.energy_window_scatter_upper: energy_windows[1][1],
headers.detector_count: len(
projection_image.DetectorInformationSequence
),
headers.collimator_type: projection_image.DetectorInformationSequence[
0
].CollimatorType,
headers.rotation_start: float(
projection_image.RotationInformationSequence[
0
].StartAngle
),
headers.rotation_step: float(
projection_image.RotationInformationSequence[
0
].AngularStep
),
headers.rotation_scan_arc: float(
projection_image.RotationInformationSequence[0].ScanArc
),
}
_filename_base = f"{_id:04d}-{protocol.name.lower()}"
_ext = "dcm"
_images = list(
map(lambda extrac: extrac["images"][j], extractions)
)
for _image, extrac in zip(_images, extractions):
image = pydicom.dcmread(_image.filename)
filename = f"{_filename_base}-{extrac['prefix']}.{_ext}"
pydicom.dcmwrite(
os.path.join(args.images_dir, filename), image
)
row[extrac["header"]] = filename
_id += 1
row = pd.DataFrame(row, index=[0])
data = pd.concat((data, row), ignore_index=True)
data.to_csv(args.meta_csv, index=False)
except Exception as e:
logger.error(e)
raise e