Newer
Older

Fabian Heinrich
committed
import json
from datetime import datetime, timedelta
from functools import reduce
from threading import Lock
import matplotlib.pyplot as plt
import numpy as np
import numpy.typing as npt
import pygame

Fabian Heinrich
committed
import yaml
from scipy.spatial import KDTree
from cooperative_cuisine import ROOT_DIR
from cooperative_cuisine.argument_parser import create_screenshot_parser
from cooperative_cuisine.environment import Environment
from cooperative_cuisine.pygame_2d_vis.game_colors import colors, RGB
from cooperative_cuisine.state_representation import (
PlayerState,
CookingEquipmentState,
ItemState,
"""Do caching of background and or counters.
You can combine them via `|` operator: `CacheFlags.BACKGROUND | CacheFlags.COUNTER`.
You can specify the cache flags via the visualization config under GameWindow.cache_flags (just name the flags in a list):
```yaml
GameWindow:
# optimization
cache_flags: [Counters, Background] # [None]
reduced_background: true
"""
"""Cache the Background lines / texture."""
COUNTERS = auto()
"""Cache the basic counter drawing. If used without Background flag, you need to set the config attribute GameWindow.reduced_background to true (or the class attribute reduced_background of the Visualizer)."""
def calc_angle(vec_a: list[float], vec_b: list[float]) -> float:
a = pygame.math.Vector2(vec_a)
b = pygame.math.Vector2(vec_b)
return a.angle_to(b)
def create_polygon(n, start_vec):
if n == 1:
return np.array([0, 0])
vector = start_vec.copy()
angle = (2 * np.pi) / n
rot_matrix = np.array(
[[np.cos(angle), -np.sin(angle)], [np.sin(angle), np.cos(angle)]]
)
vecs = [vector]
for i in range(n - 1):
vector = np.dot(rot_matrix, vector)
vecs.append(vector)
return vecs
class Visualizer:
"""Class for visualizing the game state retrieved from the gameserver.
2D game screen is drawn with pygame shapes and images.
Args:
config: Visualization configuration (loaded from yaml file) given as a dict.
"""
def __init__(self, config):
self.image_cache_dict = {}
self.surface_cache_dict = {}
self.player_colors = []
self.config = config
config["Gui"]["use_player_cook_sprites"]
if "Gui" in config and "use_player_cook_sprites" in config["Gui"]
else True
)
self.SHOW_INTERACTION_RANGE = (
config["Gui"]["show_interaction_range"]
if "Gui" in config and "show_interaction_range" in config["Gui"]
else False
)
self.SHOW_COUNTER_CENTERS = (
config["Gui"]["show_counter_centers"]
if "Gui" in config and "show_counter_centers" in config["Gui"]
self.init_get_state_image = False
self.observation_screen = pygame.display.set_mode(
(100, 100), flags=pygame.HIDDEN
)
self.grid_size = 48
configs_cache_flags = [CacheFlags[c.upper()] for c in (
config["GameWindow"]["cache_flags"] if "GameWindow" in config and "cache_flags" in config[
"GameWindow"] else ["Counters", "Background"])]
self.cache_flags = reduce(lambda s, x: s | x, configs_cache_flags, CacheFlags.NONE)
self.grid_size_lock = Lock()
self.reduced_background = config["GameWindow"][
"reduced_background"] if "GameWindow" in config and "reduced_background" in config["GameWindow"] else True
def invalidate_surface_cache(self):
self.surface_cache_dict = {}
def create_player_colors(self, n) -> None:
"""Create different colors for the players. The color hues are sampled uniformly in HSV-Space,
then the corresponding colors from the defined colors list are looked up.
Args:
n: Number of players to create colors for.
"""
hue_values = np.linspace(0, 1, n + 1)
colors_vec = np.array([col for col in colors.values()])
tree = KDTree(colors_vec)
color_names = list(colors.keys())
self.player_colors = []
for hue in hue_values:
rgb = colorsys.hsv_to_rgb(hue, 1, 1)
query_color = np.array([int(c * 255) for c in rgb])
_, index = tree.query(query_color, k=1)
self.player_colors.append(color_names[index])
def set_grid_size(self, grid_size: float):
self.grid_size = grid_size
def model_to_world_coords(self, pos):
return (np.array(pos) + 0.5) * self.grid_size
self,
state: dict,
controlled_player_idxs: list[int],
env_id_ref=None,
"""Draws the game state on the given surface.
Args:
screen: The pygame surface to draw the game on.
state: The gamestate retrieved from the environment.
grid_size: The gridsize to base every object size in the game on.
"""
width = int(np.ceil(state["kitchen"]["width"] * self.grid_size))
height = int(np.ceil(state["kitchen"]["height"] * self.grid_size))
screen = pygame.Surface((width, height), pygame.SRCALPHA)
if env_id_ref in self.surface_cache_dict:
screen.blit(self.surface_cache_dict[env_id_ref], (0, 0))
else:
if CacheFlags.BACKGROUND in self.cache_flags:
self.draw_background(
surface=screen,
width=width,
height=height,
fixed_counter_pos=set([(int(c["pos"][0]), int(c["pos"][1])) for c in state["counters"]])
if CacheFlags.COUNTERS in self.cache_flags:
self.draw_counters(
screen,
state["counters"],
)
self.surface_cache_dict[env_id_ref] = screen.copy()
if CacheFlags.BACKGROUND not in self.cache_flags:
self.draw_background(
surface=screen,
width=width,
height=height,
fixed_counter_pos=set([(int(c["pos"][0]), int(c["pos"][1])) for c in state["counters"]]),
if CacheFlags.COUNTERS not in self.cache_flags:
self.draw_counters(
screen,
state["counters"],
)
self.draw_counter_contents(

Fabian Heinrich
committed
for idx, col in zip(controlled_player_idxs, [colors["red"], colors["blue"]]):

Fabian Heinrich
committed
pygame.draw.circle(
screen,
col,
(np.array(state["players"][int(idx)]["pos"]) + 0.5) * self.grid_size,
(self.grid_size / 2),

Fabian Heinrich
committed
self.draw_players(
screen,
if "view_restrictions" in state and state["view_restrictions"]:
self.draw_lightcones(screen, width, height, state)
# for x in range(0, width, int(np.round(self.grid_size))):
# for y in range(0, height, int(np.round(self.grid_size))):
# rect = pygame.Rect(x, y, self.grid_size, self.grid_size)
# pygame.draw.rect(
# screen,
# colors["green"],
# rect,
# 1,
# )

Fabian Heinrich
committed
def draw_lightcones(self, screen, width, height, state):
view_restrictions = state["view_restrictions"]
mask = pygame.Surface(screen.get_size(), pygame.SRCALPHA)
mask.fill((0, 0, 0, 0))
mask_color = (0, 0, 0, 0)
for idx, restriction in enumerate(view_restrictions):
direction = pygame.math.Vector2(restriction["direction"])
pos = pygame.math.Vector2(restriction["position"])
angle = restriction["angle"] / 2
view_range = restriction["range"]
angle = min(angle, 180)
# pos = pos * self.grid_size + pygame.math.Vector2([self.grid_size / 2, self.grid_size / 2])
pos = pygame.math.Vector2(self.model_to_world_coords(pos).tolist())
rect_scale = max(width, height) * 2
# rect_scale = 2 * grid_size
left_beam = pos + (direction.rotate(angle) * rect_scale * 2)
right_beam = pos + (direction.rotate(-angle) * rect_scale * 2)
cone_mask = pygame.surface.Surface(screen.get_size(), pygame.SRCALPHA)
cone_mask.fill((255, 255, 255, 255))
offset_front = direction * self.grid_size * 0.7
if angle != 180:
shadow_cone_points = [
pos - offset_front,
left_beam - offset_front,
left_beam + (direction.rotate(90) * rect_scale),
pos
- (direction * rect_scale * 2)
+ (direction.rotate(90) * rect_scale),
pos
- (direction * rect_scale * 2)
+ (direction.rotate(-90) * rect_scale),
right_beam + (direction.rotate(-90) * rect_scale),
right_beam - offset_front,
light_cone_points = [pos - offset_front, left_beam, right_beam]
pygame.draw.polygon(
cone_mask,
mask_color,
shadow_cone_points,
n_circle_points = 40
start_vec = np.array(-direction * view_range)
np.array(create_polygon(n_circle_points, start_vec)) * self.grid_size
circle_closed = np.concatenate([points, points[0:1]], axis=0)
corners = [
pos - (direction * rect_scale),
*circle_closed,
pos - (direction * rect_scale),
pos
- (direction * rect_scale)
+ (direction.rotate(90) * rect_scale),
+ (direction * rect_scale)
+ (direction.rotate(90) * rect_scale),
pos
+ (direction * rect_scale)
+ (direction.rotate(-90) * rect_scale),
pos
- (direction * rect_scale)
+ (direction.rotate(-90) * rect_scale),
pygame.draw.polygon(cone_mask, mask_color, corners)
mask.blit(cone_mask, (0, 0), special_flags=pygame.BLEND_MAX)
screen.blit(
mask,
mask.get_rect(),
special_flags=pygame.BLEND_RGBA_MULT,
)
self, surface: pygame.Surface, width: int, height: int, fixed_counter_pos: set[tuple[int, int]] | None,
):
"""Visualizes a game background.
Args:
surface: The pygame surface to draw the background on.
width: The kitchen width.
height: The kitchen height.
fixed_counter_pos: Set of counter positions.
block_size = int(np.ceil(self.grid_size / 2)) # Set the size of the grid block
if self.reduced_background:
for x_idx, x in enumerate(np.arange(0, width, self.grid_size / 2)):
for y_idx, y in enumerate(np.arange(0, height, self.grid_size / 2)):
if (x_idx // 2, y_idx // 2) not in fixed_counter_pos:
rect = pygame.Rect(np.round(x), np.round(y), block_size, block_size)
surface.fill(colors[self.config["Kitchen"]["ground_tiles_color"]], rect)
pygame.draw.rect(
surface,
self.config["Kitchen"]["background_lines"],
rect,
1,
)
else:
surface.fill(colors[self.config["Kitchen"]["ground_tiles_color"]])
for x in range(0, width, block_size):
for y in range(0, height, block_size):
rect = pygame.Rect(x, y, block_size, block_size)
pygame.draw.rect(
surface,
self.config["Kitchen"]["background_lines"],
rect,
1,
)
self,
screen: pygame.Surface,
img_path: Path | str,
size: float,
pos: npt.NDArray,
rot_angle=0,
burnt: bool = False,
"""Draws an image on the given screen.
Args:
screen: The pygame surface to draw the image on.
img_path: The path to the image file, given relative to the pygame_2d_vis directory.
size: The size of the image, given in pixels.
pos: The position of the center of the image, given in pixels.
rot_angle: Optional angle to rotate the image around.
"""
size = int(np.round(size))
rot_angle = int(np.round(rot_angle))
cache_entry = f"{img_path}-{size}-{rot_angle}{'-burnt' if burnt else ''}"
if cache_entry in self.image_cache_dict:
image = self.image_cache_dict[cache_entry]
image = pygame.image.load(
ROOT_DIR / "pygame_2d_vis" / img_path
).convert_alpha()
# TODO: smoothscale or not???
# image = pygame.transform.smoothscale(image, (size, size))
image = pygame.transform.scale(image, (size, size))
if rot_angle != 0:
image = pygame.transform.rotate(image, rot_angle)
self.image_cache_dict[cache_entry] = image
screen.blit(image, rect)
def draw_cook(
self,
screen: pygame.Surface,
pos: npt.NDArray[float] | list[float],
color: RGB,
facing: npt.NDArray[float] | list[float],
):
pygame.draw.circle(
screen,
color,
self.model_to_world_coords(pos - facing * 0.25),
self.grid_size * 0.2,
self.draw_thing(screen, pos, self.config["Cook"]["parts"], scale=1.0, orientation=facing.tolist())
self,
screen: pygame.Surface,
players: dict,
):
"""Visualizes the players as circles with a triangle for the facing direction.
If the player holds something in their hands, it is displayed
Args:
screen: The pygame surface to draw the players on.
players: The state of the players returned by the environment.
for p_idx, player_dict in enumerate(players):
player_dict: PlayerState
pos = player_dict["pos"]
facing = np.array(player_dict["facing_direction"], dtype=float)
if self.USE_PLAYER_COOK_SPRITES:
self.draw_cook(
screen, pos, colors[self.player_colors[p_idx]], facing
size = player_radius * self.grid_size
color1 = self.player_colors[p_idx]
color2 = colors["white"]
pygame.draw.circle(screen, color2, pos, size)
pygame.draw.circle(screen, colors["blue"], pos, size, width=1)
pygame.draw.circle(screen, colors[color1], pos, size // 2)
pygame.draw.polygon(
screen,
colors["blue"],
(
(
pos[0] + (facing[1] * 0.1 * self.grid_size),
pos[1] - (facing[0] * 0.1 * self.grid_size),
pos[0] - (facing[1] * 0.1 * self.grid_size),
pos[1] + (facing[0] * 0.1 * self.grid_size),
pos + (facing * 0.5 * self.grid_size),
),
)
if player_dict["holding"] is not None:
holding_item_pos = pos + (facing * 0.5)
self.draw_item(
pos=holding_item_pos,
item=player_dict["holding"],
screen=screen,
if player_dict["current_nearest_counter_pos"]:
nearest_pos = np.round(np.array(player_dict["current_nearest_counter_pos"]) * self.grid_size)
interaction_marker_width = max(1, int(self.grid_size / 15))
pygame.draw.rect(
screen,
colors[self.player_colors[p_idx]],
rect=pygame.Rect(
*nearest_pos,
self.grid_size,
self.grid_size,
width=interaction_marker_width,
)
if self.SHOW_INTERACTION_RANGE:
pygame.draw.circle(
screen,
colors["blue"],
pos + (facing * self.grid_size * 0.4),
1.6 * self.grid_size,
width=1,
pygame.draw.circle(
screen, colors["red1"], pos + (facing * self.grid_size * 0.4), 4
self,
screen: pygame.Surface,
pos: npt.NDArray[float],
parts: list[dict[str]],
scale: float = 1.0,
burnt: bool = False,
orientation: list[float] | None = None,
absolute_size=None,
absolute=False,
):
"""Draws an item, based on its visual parts specified in the visualization config.
Args:
screen: the game screen to draw on.
grid_size: size of a grid cell.
pos: Where to draw the item parts.
parts: The visual parts to draw.
scale: Rescale the item by this factor.
orientation: Rotate the item to face this direction.
"""
for part in parts:
part_type = part["type"]
if absolute:
draw_pos = pos
else:
draw_pos = self.model_to_world_coords(pos)
if orientation is not None:
angle_offset = calc_angle(orientation, [0, 1])
if "rotate_image" in part.keys():
if part["rotate_image"]:
angle = calc_angle(orientation, [0, 1])
else:
angle = angle_offset
if "rotate_offset" in part.keys():
angle_offset = 0
match part_type:
case "image":
if "center_offset" in part:
d = pygame.math.Vector2(part["center_offset"]) * self.grid_size
d.rotate_ip(angle_offset)
d[0] = -d[0]
size = (
absolute_size
if absolute_size is not None
else part["size"] * scale
if not absolute:
size *= self.grid_size
self.draw_image(
screen,
part["path"],
draw_pos,
burnt=burnt,
d = pygame.math.Vector2(part["center_offset"]) * self.grid_size
height = part["height"] * self.grid_size
width = part["width"] * self.grid_size
rect = pygame.Rect(
draw_pos[0] - (height / 2),
draw_pos[1] - (width / 2),
height,
width,
pygame.draw.rect(screen, color, rect)
d = pygame.math.Vector2(part["center_offset"]) * self.grid_size
d.rotate_ip(-angle_offset)
draw_pos += np.array(d)
radius = part["radius"] * self.grid_size
color = colors[part["color"]]
pygame.draw.circle(screen, color, draw_pos, radius)
self,
pos: npt.NDArray[float] | list[float],
item: ItemState | CookingEquipmentState | EffectState,
scale: float = 1.0,
plate=False,
screen=None,
absolute=False,
):
"""Visualization of an item at the specified position. On a counter or in the hands of the player.
The visual composition of the item is read in from visualization.yaml file, where it is specified as
different parts to be drawn.
Args:
grid_size: size of a grid cell.
pos: The position of the item to draw.
item: The item do be drawn in the game.
scale: Rescale the item by this factor.
screen: the pygame screen to draw on.
plate: item is on a plate (soup are is different on a plate and pot)
"""

Fabian Heinrich
committed
if not isinstance(item, list): # can we remove this check?
if item["type"] in self.config or (
item["type"].startswith("Burnt")
and item["type"].replace("Burnt", "") in self.config
item_key = item["type"]
if "Soup" in item_key and plate:
elif item_key.startswith("Burnt"):
item_key = item_key.replace("Burnt", "")
f"{item_key}{int(self.fire_state / self.fire_time_steps) + 1}"
pos=pos,
parts=self.config[item_key]["parts"],
scale=scale,
screen=screen,
burnt=item["type"].startswith("Burnt"),
absolute=absolute,
if "progress_percentage" in item and item["progress_percentage"] > 0.0:
if item["inverse_progress"]:
percentage = 1 - item["progress_percentage"]
else:
percentage = item["progress_percentage"]
self.draw_progress_bar(
screen,
pos,
percentage,
attention=item["inverse_progress"],
absolute=absolute,
if (
"content_ready" in item
and item["content_ready"]
and (
item["content_ready"]["type"] in self.config
or (
item["content_ready"]["type"].startswith("Burnt")
and item["content_ready"]["type"].replace("Burnt", "")
in self.config
)
):
self.draw_thing(
pos=pos,
parts=self.config[item["content_ready"]["type"].replace("Burnt", "")][
"parts"
],
screen=screen,
burnt=item["type"].startswith("Burnt"),
)
elif "content_list" in item and item["content_list"]:
len(item["content_list"]), np.array([0, 0.15])
scale = 1 if len(item["content_list"]) == 1 else 0.6
for idx, o in enumerate(item["content_list"]):
self.draw_item(
pos=np.array(pos) + triangle_offsets[idx],
item=o,
scale=scale,
plate="Plate" in item["type"],
if "active_effects" in item and item["active_effects"]:
for effect in item["active_effects"]:
self.draw_item(pos=pos, item=effect, screen=screen)
screen: pygame.Surface,
pos: npt.NDArray[float],
percent: float,
attention: bool = False,
absolute: bool = False,
size: float = None
"""Visualize progress of progressing item as a green bar under the item.
Args:
screen: The pygame surface to draw the progress bar on.
pos: The center position of a tile to draw the progress bar under.
percent: Progressed percent of the progress bar.
grid_size: Scaling of the progress bar given in pixels.
"""
if absolute:
assert size, "Size must be given if absolute is True."
bar_pos = pos - (size / 2)
else:
size = self.grid_size
bar_pos = self.model_to_world_coords(pos - 0.5)
bar_height = size * 0.2
progress_width = percent * size
bar_pos[1] + size - bar_height,
progress_width,
bar_height,
pygame.draw.rect(screen, colors["red" if attention else "green1"], progress_bar)
self, screen: pygame.Surface, counter_dict: dict
):
"""Visualization of a counter at its position. If it is occupied by an item, it is also shown.
The visual composition of the counter is read in from visualization.yaml file, where it is specified as
different parts to be drawn.
Args:
screen: The pygame surface to draw the counter on.
counter_dict: The counter to visualize, given as a dict from the game state.
grid_size: Scaling of the counter given in pixels.
pos = np.array(counter_dict["pos"], dtype=float)
counter_type = counter_dict["type"]
self.draw_thing(
screen,
pos,
self.config["Counter"]["parts"],
orientation=counter_dict["orientation"]
if "orientation" in counter_dict
else None,
if counter_type in self.config:
self.draw_thing(
screen,
pos,
self.config[counter_type]["parts"],
orientation=counter_dict["orientation"],
)

Florian Schröder
committed
if counter_type in self.config:
parts = self.config[counter_type]["parts"]
elif counter_type.endswith("Dispenser"):
parts = self.config["Dispenser"]["parts"]
else:
raise ValueError(f"Can not draw counter type {counter_type}")
screen=screen,
pos=pos,

Florian Schröder
committed
parts=parts,
def draw_counter_occupier(
self,
screen: pygame.Surface,
occupied_by: dict | list,
pos: npt.NDArray[float],
item_scale: float,
"""Visualization of a thing lying on a counter.
Args:
screen: The pygame surface to draw the item on the counter on.
occupied_by: The thing that occupies the counter.
grid_size: Scaling of the object given in pixels.
pos: The position of the counter which the thing lies on.
item_scale: Relative scaling of the item.
"""
# Multiple plates on plate return:
if isinstance(occupied_by, list):
for i, o in enumerate(occupied_by):
stack_pos = np.abs([pos[0], pos[1] - (i * 0.075)])
self.draw_item(
screen=screen,

Fabian Heinrich
committed
pos=stack_pos,
# All other items:
else:
self.draw_item(
pos=pos,
item=occupied_by,
screen=screen,
def draw_counters(self, screen: pygame, counters: dict):
"""Visualizes the counters in the environment.
Args:
screen: The pygame surface to draw the counters on.
counters: The counter state returned by the environment.
grid_size: Scaling of the object given in pixels.
self.draw_counter(screen, counter)
def draw_counter_contents(self, screen: pygame, counters: dict):
"""Visualizes the contents of the counters in the environment."""
if counter["occupied_by"]:
if counter_type.endswith("Dispenser") and "Plate" not in counter_type:
if "item_offset" in self.config["Dispenser"].keys():
offset_vec = pygame.math.Vector2(
self.config["Dispenser"]["item_offset"]
)
offset_vec.rotate_ip(
offset_vec.angle_to(
pygame.math.Vector2(counter["orientation"])
)
+ 180
)
item_pos += offset_vec
if "item_scale" in self.config["Dispenser"].keys():
item_scale = self.config["Dispenser"]["item_scale"]
self.draw_counter_occupier(
pos=item_pos,
if counter["active_effects"]:
for effect in counter["active_effects"]:
self.draw_item(
pos=np.array(counter["pos"]),
screen=screen,
item=effect,
)
pos = (np.array(counter["pos"]) + 0.5) * self.grid_size
pygame.draw.circle(screen, colors["green1"], pos, 1)
pygame.draw.circle(screen, colors["green1"], pos, 1)
facing = np.array(counter["orientation"])
# pygame.draw.polygon(
# screen,
# colors["red"],
# (
# (
# pos[0] + (facing[1] * 0.1 * grid_size),
# pos[1] - (facing[0] * 0.1 * grid_size),
# ),
# (
# pos[0] - (facing[1] * 0.1 * grid_size),
# pos[1] + (facing[0] * 0.1 * grid_size),
# ),
# pos + (facing * 0.5 * grid_size),
# ),
# )
self.fire_state = (self.fire_state + 1) % (3 * self.fire_time_steps)
self,
screen: pygame.surface,
state: dict,
grid_size: int,
width: int,
height: int,
config: dict,
"""Visualization of the current orders.
Args:
screen: pygame surface to draw the orders on, probably not the game screen itself.
state: The game state returned by the environment.
grid_size: Scaling of the drawn orders, given in pixels.
width: Width of the pygame window
height: Height of the pygame window.
config: Visualization configuration (loaded from yaml file) given as a dict.
"""
bg_color = colors[config["GameWindow"]["background_color"]]
pygame.draw.rect(screen, bg_color, screen.get_rect())
order_rects_start = (orders_height // 2) - (grid_size // 2)
for idx, order in enumerate(state["orders"]):
order_upper_left = [
order_rects_start + idx * grid_size * 1.2,
colors["red"],
pygame.Rect(
order_upper_left[0],
order_upper_left[1],
grid_size,
grid_size,
center = np.array(order_upper_left)
parts=config["Plate"]["parts"],
scale=grid_size,
absolute=True
item={"type": order["meal"]},
scale=grid_size,
absolute=True
)
order_done_seconds = (
(
datetime.fromisoformat(order["start_time"])
+ timedelta(seconds=order["max_duration"])
)
- datetime.fromisoformat(state["env_time"])
percentage = order_done_seconds / order["max_duration"]
self.draw_progress_bar(
percent=percentage,
attention=percentage < 0.25,
size=grid_size,
absolute=True

Fabian Heinrich
committed
self.font.set_bold(True)
text_surface = self.font.render(str(order["score"]), True, (0, 0, 0))
screen.blit(text_surface, center)
def get_state_image(self, state: dict,
controlled_players: list[int] = None,
grid_size: int | None = None,
env_id_ref=None,
) -> npt.NDArray[np.uint8]:
if grid_size is None:
return pygame.surfarray.pixels3d(
self.draw_gamescreen(state,
[0] if controlled_players is None else controlled_players,
env_id_ref=env_id_ref
)).transpose((1, 0, 2))
with self.grid_size_lock:
pre_grid_size = self.grid_size
try:
self.set_grid_size(grid_size)
screen = self.draw_gamescreen(state, [0] if controlled_players is None else controlled_players,
env_id_ref=env_id_ref)
finally:
self.set_grid_size(pre_grid_size)
return pygame.surfarray.pixels3d(screen).transpose((1, 0, 2))
def get_state_image_by_size(self, state: dict,
controlled_players: list[int] = None,
env_id_ref=None):
grid_size = max_size / max(state["kitchen"]["width"], state["kitchen"]["height"])
image = self.get_state_image(state, controlled_players, grid_size, env_id_ref=env_id_ref)
if state["kitchen"]["width"] == state["kitchen"]["height"]:
return image
squared = np.zeros((max_size, max_size, 3), dtype=np.uint8)
squared[:image.shape[0], :image.shape[1], :] = image
return squared

Fabian Heinrich
committed
def draw_recipe_image(
self, screen: pygame.Surface, graph_dict, width, height, node_size

Fabian Heinrich
committed
) -> None:
# screen.fill(self.config["GameWindow"]["background_color"])

Fabian Heinrich
committed

Fabian Heinrich
committed
positions = np.array(list(positions_dict.values()))
unique_x_vals = np.unique(positions[:, 0])
new_positions_unique = np.linspace(